giải và biện luận phương trình:
a(ax + 1) = x(a + 2) + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có: \(a\left(ax+b\right)=b^2\left(x-1\right)\)
\(\Leftrightarrow a^2x+ab=b^2x-b^2\)
\(\Leftrightarrow a^2x-b^2x=-b^2-ab\)
\(\Leftrightarrow x\left(a^2-b^2\right)=-b\left(b+a\right)\)
\(\Leftrightarrow x\left(b^2-a^2\right)=b\left(b+a\right)\)(1)
Nếu a=b thì (1) trở thành: \(0x=2b^2\)(vô nghiệm)
Nếu a=-b thì (1) trở thành: 0x=0(luôn đúng)
Nếu \(\left|a\right|\ne\left|b\right|\) thì \(x=\dfrac{b}{b-a}\)
Không chắc đúng hay không nha,tui mới lớp 7=(
\(x\left(a^2-b^2\right)+b\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)x+b\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[\left(a-b\right)x+b\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-b\\ax-bx+b=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=-b\\x=-\frac{b}{a-b}\end{cases}}\)
+Với a = -b,thì phương trình trở thành:
\(-b\left(-bx+b\right)=b^2\left(x-1\right)\)
\(\Leftrightarrow0=0\) (luôn đúng)
Vậy nếu a = -b thì phương trình có vô số nghiệm.
Với ax - bx + b = 0 thì \(x=-\frac{b}{a-b}=\frac{b}{b-a}\)
\(a\left(ã+1\right)=x\left(a+2\right)+2\)
\(\Leftrightarrow a^2x+a-x.\left(a+2\right)-2=0\)
\(\Leftrightarrow x.\left(x^2-a-2\right)=2-a\)
TH1: \(a^2-a-2=0\Leftrightarrow a=2\) hoặc \(a=-1\)
Nếu \(a=2\) thì \(0x=0\)
\(\rightarrow\) Phương trình thỏa mãn với mọi x
Nếu \(a=-1\) thì \(0x=3\)
\(\rightarrow\) Phương trình vô nghiệm
Th2: \(a^2-a-2\) khác 0 ⇔ a khác 2 và a khác -1
\(\rightarrow x=\frac{2-a}{a^2-a-2}=\frac{1}{a+1}\)
Vậy ...