K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

Sửa đề: \(B=x^3+23x\) chia hết cho 6 với mọi x thuộc Z

\(B=x^3-x+24x\)

\(=x\left(x-1\right)\left(x+1\right)+24x\)

Vì x;x-1;x+1 là 3 số liên tiếp

nên x(x-1)(x+1) chia hết cho 3!=6

=>B chia hết cho 6

Sửa đề: \(B=x^3+23x\) chia hết cho 6 với mọi x thuộc Z

\(B=x^3-x+24x\)

\(=x\left(x-1\right)\left(x+1\right)+24x\)

Vì x;x-1;x+1 là 3 số liên tiếp

nên x(x-1)(x+1) chia hết cho 3!=6

=>B chia hết cho 6

27 tháng 3 2017

Mọi người tk mình đi mình đang bị âm nè!!!!!!

Ai tk mình mình tk lại nha !!!

1 tháng 5 2020

với n = 1 có : ( 1 + 1 ) chia hết cho 2

giả sử, với n = k thì ( k + 1 ) ( k + 2 ) ... 2k \(⋮\)2k

cần chứng minh đúng với n = k + 1

tức là ( k + 1 + 1 ) ( k + 1 + 2 ) ... 2 (k + 1 ) \(⋮\)2k+1

Ta có : ( k + 1 + 1 ) ( k + 1 + 2 ) ... 2 (k + 1 ) = ( k + 2 ) ( k + 3 ) ... 2k .2 ( k + 1 )

= 2 ( k + 1 ) ( k + 2 ) ... 2k \(⋮\)2.2k = 2k+1

vậy ta có đpcm

9 tháng 10 2021

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

                                             =\(n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

                                            \(=n\left(n-1\right)\left(n+1\right)\left[\left(n^2-4\right)+5\right]\)

                                             \(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)-5n\left(n-1\right)\left(n+1\right)\)

                                              \(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)-5n\left(n-1\right)\left(n+1\right)\)

Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là 5 số nguyên dương liên tiếp \(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)(1)

Do    \(5⋮5\Rightarrow5n\left(n-1\right)\left(n+1\right)⋮5\)(2)

Từ (1) và (2) => ĐPCM

26 tháng 1 2016

kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh

13 tháng 3 2021

Với \(n=1\Rightarrow2^n+6.9^n=2+6.9=56⋮7\) 

Giả sử \(2^k+6.9^k⋮7\) ta cần chứng minh \(2^{k+1}+6.9^{k+1}⋮7\)

\(2^{k+1}+6.9^{k+1}=2.2^k+6.9.9^k=2\left(2^k+27.9^k\right)=2\left(2^k+6.9^k+21.9^k\right)\)

Ta thấy \(2^k+6.9^k⋮7;21.9^k⋮7\Rightarrow2^{k+1}+6.9^{k+1}⋮7\)

Kết luận: \(2^n+6.9^n⋮7\forall n\)