Bài 7: Cho 2a + 3b + 3c = 11m. Chứng minh: (2m – a)2 + (3m – b)2 + (3m –c)2 = a2 +b2 + c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left(m-a\right)^2+\left(2m-b\right)^2+\left(3m-c\right)^2\)
\(=m^2-2am+a^2+4m^2-4bm+9m^2-6mc+c^2\)
\(=14m^2-2m\left(a+2b+3c\right)+a^2+b^2+c^2\)
\(=14m^2-14m^2+a^2+b^2+c^2\) ( do \(a+2b+3c=7m\) )
\(=a^2+b^2+c^2=VP\)
\(\Rightarrowđpcm\)
Ta có: \(VT=\left(m-a\right)^2+\left(2m-b\right)^2+\left(3m-c\right)^2\)
\(=m^2-2ma+a^2+4m^2-4mb+b^2+9m^2-6mc+c^2\)
\(=m^2-2ma+4m^2-4mb+9m^2-6mc+a^2+b^2+c^2\)
\(=m\left(14m-2a-4b-6c\right)+a^2+b^2+c^2\)
\(=-2m\left(-7m+a+2b+6c\right)+a^2+b^2+c^2\)
\(=-2m\left(-7m+7m\right)+a^2+b^2+c^2\)
\(=a^2+b^2+c^2=VP\)
Vậy (m - a)2 + (2m - b)2 + (3m - c)2 = a2 + b2 + c2.
2:
a: =>a^2+2ab+b^2-2a^2-2b^2<=0
=>-(a^2-2ab+b^2)<=0
=>(a-b)^2>=0(luôn đúng)
b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0
=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
Hì hì, thật ra thì mình không biết giúp thằng bạn mình như thế nào nên đành tự đăng câu hỏi vậy :))
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{3a-c}{3b-d}=\dfrac{3bk-dk}{3b-d}=k\)
\(\dfrac{2a+3c}{2b+3d}=\dfrac{2bk+3dk}{2b+3d}=k\)
Do đó: \(\dfrac{3a-c}{3b-d}=\dfrac{2a+3c}{2b+3d}\)
c: \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)
\(\dfrac{2ab+b^2}{2cd+d^2}=\dfrac{2\cdot bk\cdot b+b^2}{2\cdot dk\cdot d+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{2ab+b^2}{2cd+d^2}\)
Đề bài sai
Phản ví dụ: \(a=\dfrac{1}{2};b=2;c=4\) vì VT<VP
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)
\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)
Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)
\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)
\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)
Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Ta có
\(\left(2m-a\right)^2+\left(3m-b\right)^2+\left(3m-c\right)^2=\)
\(=4m^2-4ma+a^2+9m^2-6mb+b^2+9m^2-6mc+c^2=\)
\(=22m^2-2m\left(2a+3b+3c\right)+a^2+b^2+c^2=\)
\(=22m^2-2m.11m+a^2+b^2+c^2=a^2+b^2+c^2\)