cho hai số -3 và 23, xen kẽ giữa hai số đó là n số hạng để tất cả các số đó tạo thành cấp số cộng có cộng sai d=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết thì ta được một cấp số cộng có n+2 số hạng với u 1 = − 3 , u n + 2 = 23.
Khi đó u n + 2 = u 1 + n + 1 d ⇔ n + 1 = u n + 2 − u 1 d = 23 − − 3 2 = 13 ⇔ n = 12
Chọn đáp án A.
u 12 = 23 S 12 = 144 ⇒ u 1 + 11 d = 23 12 2 u 1 + u 12 = 144 ⇔ u 1 + 11 d = 23 u 1 + 23 = 24 ⇔ u 1 = 1 d = 23 − u 1 11 = 2
Chọn đáp án A
Chọn A
Theo giả thiết ta có: u 1 = 2 u 5 = 22
Mà u5 = u1 + 4d nên 22 = 2 + 4d
⇒ 20 = 4 d ⇔ d = 5
⇒ u 2 = 2 + 5 = 7 u 3 = 2 + 2.5 = 12 u 4 = 2 + 3.5 = 17
Vậy tổng ba số viết xen giữa là: 7 +12 +17 = 36
Chọn A
Nếu xen 4 số vào giữa hai số để được một cấp số cộng thì cấp số cộng đó có 6 số hạng.
Theo đầu bài
Ta có: u 1 = 4 ; u 6 = 40
⇒ 40 = 4 + 5. d ⇒ d = 7 , 2
Vậy 4 số thêm vào là:11,2; 18,4; 25,6; 32,8
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
Chọn B.
Gọi bốn số đó là a ;b ;c ;d ta có hệ:
Giải ra ta được : b = 16 ; c = 20 ; d = 25 ; a = 12.