K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt : \(ƯCLN\left(a,b\right)=d\)

\(\Rightarrow a=d.m\)\(;\)\(b=d.n\)\(\left(m,n\in N;\left(a,b\right)=1;m>n\right)\)

\(\Rightarrow BCNN\left(a,b\right)=d.m.n\)

Ta có : \(\frac{ƯCLN\left(a,b\right)}{BCNN\left(a,b\right)}=\frac{1}{6}\)

\(\Rightarrow\frac{d}{d.m.n}=\frac{1}{6}\)

\(\Rightarrow m.n=6\)

\(\Rightarrow a-b=d\left(m-n\right)=5\)

Ta lại có : \(\left(m,n\right)=1\)\(;\)\(m.n=6\)\(;\)\(m>n\)

\(\Rightarrow\left(m,n\right)\in\left\{\left(6;1\right);\left(3;2\right)\right\}\)

Xét từng TH :

+) TH1 : \(m=6\)\(;\)\(n=1\)

\(\Rightarrow d\left(m-n\right)=5\)

\(\Rightarrow d\left(6-1\right)=5\)

\(\Rightarrow d.5=5\)

\(\Rightarrow d=1\)

\(\Rightarrow a=d.m=1.6=6\)

\(\Rightarrow b=d.n=1.1=1\)

+) TH2 : \(m=3\)\(;\)\(n=2\)

\(\Rightarrow d\left(m-n\right)=5\)

\(\Rightarrow d\left(3-2\right)=5\)

\(\Rightarrow d.1=5\)

\(\Rightarrow d=5\)

\(\Rightarrow a=d.m=5.3=15\)

\(\Rightarrow b=d.n=5.2=10\)

Vậy \(\left(a,b\right)\in\left\{\left(6;1\right);\left(15;10\right)\right\}\)

Cho mk hỏi 

BCNN(a,b)=a.b=d.n.d.m

Thì sao có thể =d.n.m được

Chúc bn học tốt

Thanks bn nhiều

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Lời giải:

a. Đặt $a=6x, b=6y$ với $x,y$ là 2 số nguyên tố cùng nhau 

$a>b\Rightarrow x>y$

$BCNN(a,b)=6xy=120$

$\Rightarrow xy=20$
Vì $x>y$ và $x,y$ nguyên tố cùng nhau $(x,y)=(20,1)$ hoặc $(x,y)=(5,4)$

$\Rightarrow (a,b)=(120,6)$ hoặc $(a,b)=(30,24)$

b. Bạn làm tương tự.

19 tháng 12 2021

a: a=36

b=6

19 tháng 12 2021

bài này t biết làm nè nhưng dài quá bạn có zalo ko mik chụp cho

d) Ta có: \(n^2+5n+9⋮n+3\)

\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)

\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)

mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)

nên \(3⋮n+3\)

\(\Leftrightarrow n+3\inƯ\left(3\right)\)

\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{-2;-4;0;-6\right\}\)

Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)

8 tháng 3 2021

d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3

⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3

⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3

mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3

nên 3⋮n+33⋮n+3

⇔n+3∈Ư(3)⇔n+3∈Ư(3)

⇔n+3∈{1;−1;3;−3}