cho tam giác ABC vuông tại A.
AB = 8cm
AC = 6cm
Tính BH và HC
(Áp dụng định lý Pytago giúp mình nhá)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dùng phản chứng:
- Giả sử AC < A'C'. Khi đó theo chứng minh câu a) ta có BC < B'C'. Điều này không đúng với giả thiết BC > B'C'.
Giả sử AC = A'C'. Khi đó ta có ΔABC = ΔA'B'C' (c.g.c). Suy ra BC = B'C'.
Điều này cũng không đúng với giả thiết BC > B'C'. Vậy ta phải có AC > A'C'.
(Nếu sử dụng định lý Pytago thì có thể giải bài toán sau)
Trong tam giác vuông ABC có BC 2= AB 2+ AC 2 (1)
Trong tam giác vuông A'B'C' có B'C' 2= A'B' 2+ A'C' 2 (2)
Theo giả thiết AB = A'B' nên từ (1) và (2) ta có:
- Nếu AC > A'C' thì AC 2 > A'C' 2, suy ra BC 2 > B'C' 2 hay BC > B'C'
- Nếu BC > B'C' thì BC 2 > B'C' 2, suy ra AC 2 > A'C' 2 hay AC > A'C'.
A B C H
Theo định lý Pytago ta có:
\(AB^2=BH^2+AH^2\)
\(AC^2=CH^2+AH^2\)
Vì \(BH< CH\Leftrightarrow BH^2< CH^2\Leftrightarrow BH^2+AH^2< CH^2+AH^2\)
\(\Rightarrow AB^2< AC^2\Rightarrow AB< AC\)
=> đpcm
Mình làm câu 1 trước, vừa làm vừa nêu hướng dẫn giải vì các câu sau làm tương tự.
Bước 1: Xét tam giác, lấy bình phương của cạnh lớn nhất.
Xét \(\Delta ABC\)có \(AC^2=\left(\sqrt{5}\right)^2=5\)
Kế tiếp ta xét tổng các bình phương của hai cạnh còn lại:
Lại có \(AB^2+BC^2=1^2+2^2=1+4=5\)
Cuối cùng, xét xem kết quả của 2 phép tính trên có bằng nhau hay không. Theo định lý Pytago đảo, nếu binh phương cạnh lớn nhất mà bằng tổng các bình phương 2 cạnh còn lại thì tam giác đó vuông. (tại đỉnh đối diện với cạnh lớn nhất), nếu không bằng thì không phải tam giác vuông.
\(\Rightarrow AC^2=AB^2+BC^2\left(=5\right)\)
\(\Rightarrow\Delta ABC\)vuông tại B
Áp dụng PTG: \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)
Vì MI là trung tuyến ứng cạnh huyền nên \(MI=\dfrac{1}{2}NP=5\left(cm\right)\)
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
H ở chỗ nào vậy bạn?
mình xin lỗi, mình chép nhầm đề