M = \(\frac{a+b}{a-b}.\frac{b+c}{b-c}+\frac{b+c}{b-c}.\frac{c+4}{c-4}+\frac{c+4}{c-a}.\frac{a+b}{a-b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh BĐT sau với các số dương:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Áp dụng:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)
Cộng vế với vế:
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
b.
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)
Cộng vế với vế (1); (2) và (3):
\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Bạn tham khảo:
Câu hỏi của Nobody - Toán lớp 8 | Học trực tuyến
Lời giải:
Áp dụng BĐT AM-GM:
\(\sqrt[3]{\frac{a^4}{b^4}}+\sqrt[3]{\frac{a^4}{b^4}}+\sqrt[3]{\frac{a^4}{b^4}}+\frac{a}{b}+1\geq \frac{5a}{b}\)
\(\sqrt[3]{\frac{b^4}{c^4}}+\sqrt[3]{\frac{b^4}{c^4}}+\sqrt[3]{\frac{b^4}{c^4}}+\frac{b}{c}+1\geq \frac{5b}{c}\)
\(\sqrt[3]{\frac{c^4}{a^4}}+\sqrt[3]{\frac{c^4}{a^4}}+\sqrt[3]{\frac{c^4}{a^4}}+\frac{c}{a}+1\geq \frac{5c}{a}\)
Cộng theo vế và rút gọn:
\(3\text{VT}\geq 4\text{VP}-3\)
Mà theo BĐT AM-GM: \(\text{VP}=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq 3\)
Do đó:
$3\text{VT}\geq 4\text{VP}-3\geq 3\text{VP}$
$\Rightarrow \text{VT}\geq \text{VP}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Cách khác:
Đặt \(\sqrt[3]{\frac{a}{b}}=x;\sqrt[3]{\frac{b}{c}}=y;\sqrt[3]{\frac{c}{a}}=z\Rightarrow xyz=1,x>0,y>0,z>0\) (mục đích là khử căn)
Cần chứng minh: \(x^4+y^4+z^4\ge x^3+y^3+z^3\Leftrightarrow x^4+y^4+z^4\ge\sqrt[3]{xyz}\left(x^3+y^3+z^3\right)\)
Do \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}\). Vì vậy, nó đủ để chứng minh rằng:
\(3\left(x^4+y^4+z^4\right)\ge\left(x+y+z\right)\left(x^3+y^3+z^3\right)\)
Đến đây có nhiều hướng giải, sau đây là một vài hướng:
Hướng 1:
Sử dụng BĐT C-S:
\(3\left(x^4+y^4+z^4\right)=3\left(\frac{x^6}{x^2}+\frac{y^6}{y^2}+\frac{z^6}{z^2}\right)\ge\frac{3\left(x^3+y^3+z^3\right)^2}{x^2+y^2+z^2}\)
\(=\frac{3\left(x^3+y^3+z^3\right)\left(\frac{x^4}{x}+\frac{y^4}{y}+\frac{z^4}{z}\right)}{x^2+y^2+z^2}\ge\frac{\frac{3\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)^2}{x+y+z}}{x^2+y^2+z^2}\)
\(=\frac{3\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)}{x+y+z}\ge\left(x^3+y^3+z^3\right)\left(x+y+z\right)\)
Hướng 2:(Dùng SOS)
\(VT-VP=\sum\limits_{cyc} (x^2 +xy+y^2)(x-y)^2 \geq 0\)
Hướng 3: (Dùng S-S)
Giả sử \(z=min\left\{x,y,z\right\}\).
\(VT-VP=2\left(x^2+xy+y^2\right)\left(x-y\right)^2+\left(x-z\right)\left(y-z\right)\left(x^2+xz+y^2+yz+2z^2\right)\ge0\)
Đẳng thức xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c\)
P/s:@Akai Haruma: Em nghĩ hướng này sẽ dễ suy luận hơn cách ghép cặp bằng AM-GM ạ! Cách kia hơi ảo diệu.
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
a/ \(VT=\frac{1}{a+a+b+c}+\frac{1}{a+b+b+c}+\frac{1}{a+b+c+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\frac{3}{4}\)
b/ \(VT\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{bc}{4}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{ca}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(VT\le\frac{a}{4}+\frac{b}{4}+\frac{b}{4}+\frac{c}{4}+\frac{c}{4}+\frac{a}{4}=\frac{a+b+c}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)