cho A=2+2^2+...+2^100
chứng minh rằng A chia hết cho 62
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
`1^3` \(⋮\) `1`
\(2^3⋮2\)
\(3^3⋮3\)
.................
\(100^3⋮100\)
`=>` \(1^3+2^3+3^3+...+100^3⋮1+2+3+...+100\)
vậy `A` \(⋮\)`B`
Để tính tổng của dãy số A=5+5^2+5^3+…+5^100, chúng ta có thể sử dụng công thức tổng của cấp số nhân. Công thức này là: S = a * (r^n - 1) / (r - 1), trong đó S là tổng của cấp số nhân, a là số hạng đầu tiên, r là công bội và n là số lượng số hạng. Trong trường hợp này, a = 5, r = 5 và n = 100. Áp dụng công thức, ta có: S = 5 * (5^100 - 1) / (5 - 1) Bạn có thể tính giá trị của S bằng cách sử dụng máy tính hoặc công cụ tính toán trực tuyến.
A=12.34.56...99100A=12.34.56...99100
⇒A<23.45.67...100101⇒A<23.45.67...100101
⇒A2<23.45.67...100101.12.34.56...99100⇒A2<23.45.67...100101.12.34.56...99100
⇒A2<1101<1100=1102⇒A2<1101<1100=1102
⇔A<
A=12.34.56...99100A=12.34.56...99100
⇒A<23.45.67...100101⇒A<23.45.67...100101
⇒A2<23.45.67...100101.12.34.56...99100⇒A2<23.45.67...100101.12.34.56...99100
⇒A2<1101<1100=1102⇒A2<1101<1100=1102
⇔A<
A=21+22+23+...+261+262+263
A=(21+22+23)+...+(261+262+263)
A=14+...+261.(21+22+23)
A=14+...+261.14 chia hết cho 14
tick ủng hộ mình nha
\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\\ \Rightarrow3B-B=3^2+3^3+...+3^{101}-3-3^2-3^3-...-3^{100}\\ \Rightarrow2B=3^{101}-3\\ \Rightarrow B=\dfrac{3^{101}-3}{2}\)
B = 31 + 32 + 33 + .... + 399 + 3100
3B = 3(31 + 32 + 33 + ..... + 399 + 3100)
3B = 32 + 33 + 34 +...... + 3100 + 3101
3B - B = 2B = (32 + 33 + 34 + .... + 3100 + 3101) - ( 31 + 32 + 33 + .... + 3100)
2B = (32 - 32) + (33 - 33) +.....+ ( 3100 - 3100) + ( 3101 - 1)
2B = 0 + 0 + 0 + ..... +0 + 3101 - 1
2B = 3101 - 1
B = (3101 - 1) : 2
A = 21 + 22 + 23 + ................ + 2120
Chứng minh chia hết cho 7
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)
A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)
A = 2.7 + 24 . 7 + ................ + 2118.7
A = 7.(2 + 24 + ........... + 2118)
Chứng minh chia hết cho 31
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)
A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)
A = 2.31 + 26.31 + ....... + 2116 . 31
A = 31.(2 + 26 + ........... + 2116)
a)A=2(1+2+2^2+...+2^19)
=>A chia hết cho 2
b)A=(2+2^2)+(2^3+2^4)+...+(2^19+2^20)
A=2(1+2)+2^3(1+2)+...+2^19(1+2)
A=2.3+2^3.3+...+2^19.3
A=3(2+2^3+...+2^19)
=>A chia hết cho 3
c)A=(2+2^3)+(2^2+2^4)+...+(2^18+2^20)
A=2(1+2^2)+2^2(1+2^2)+...+2^18(1+2^2)
A=2.5+2^2.5+...+2^18.5
A=5(2+2^2+...+2^18)
=>A chia hết cho 5
có ai biết giups mình với nha
\(A=2+2^2+...+2^{100}\)
\(\Rightarrow A=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(\Rightarrow1.\left(2+2^2+2^3+2^4+2^5\right)+...+1.\left(2+2^2+2^3+2^4+2^5\right)\)
\(\Rightarrow1.62+...+1.62\)
Mà \(62⋮62\)
\(\Rightarrow A=2+2^2+...+2^{100}⋮62\)