Cho hình chữ nhật ABCD cóa AB=2AD. Vẽ BH vuông góc với AC. Gọi M,N,P lần lượt là trung điểm của AH, BH, CD
a, chứng minh MNCP là hbh
b, Chứng mình MP vuông góc MB
c, Gọi I là trung điểm của BP và J là giao điểm của MC và NP. Chứng minh MI- IJ < IP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//PC và MN=PC
=>NCPM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MP
hay góc BMP=90 độ