K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2020

a) 15-n \(⋮\)n-2

\(\Rightarrow\)-(15-n) \(⋮\) n-2

\(\Rightarrow\)n-15 \(⋮\)n-2

\(\Rightarrow\)n-2-13 \(⋮\)n-2

\(\Rightarrow\)13 \(⋮\)n-2

\(\Rightarrow\)n-2 \(\in\)Ư(13)

\(\Rightarrow\)Ư(13) \(\in\){-1;1-13;13}

Lập bảng:

n-2-11-1313
n13-1115

Vậy... 

b) 3-4n \(⋮\)2n-1

\(\Rightarrow\)4n-3 \(⋮\)2n-1

\(\Rightarrow\)2(2n-1)-1 \(⋮\)2n-1

\(\Rightarrow\)\(⋮\)2n-1

\(\Rightarrow\)2n-1 \(\in\)Ư(1)

\(\Rightarrow\)Ư(1) \(\in\){-1;1}

Lập bảng:

2n-1-11
n01
NXtmtm

Vậy... 

c) x-5 \(⋮\)3x-2

\(\Rightarrow\)3(x-5) \(⋮\)3x-2

\(\Rightarrow\)3x-15 \(⋮\)3x-2

\(\Rightarrow\)3x-2-13 \(⋮\)3x-2

\(\Rightarrow\)13 \(⋮\)3x-2

\(\Rightarrow\)3x-2 \(\in\)Ư(13)

\(\Rightarrow\)Ư(13) \(\in\){-1;1;-13;13}

Lập bảng:

3x-2-11-1313
x1/31-11/35
NXloạitm loạitm 

Vậy... 

d) 3x2-13 \(⋮\)x-2

\(\Rightarrow\)3x(x-2)+6x-13 \(⋮\)x-2

\(\Rightarrow\)3x(x-2)+6(x-2)-1 \(⋮\)x-2

\(\Rightarrow\)\(⋮\)x-2

\(\Rightarrow\)x-2 \(\in\)Ư(1)

\(\Rightarrow\)Ư(1) \(\in\){-1;1}

Lập bảng:

x-2-11
x13

Vậy... 

Bạn check lại giúp mình nhé, mấy dạng kiểu này(câu a, b mình chưa làm quen) nên ko chắc ạ. 

23 tháng 2 2021

a)Ta có: 2n+9 chia hết n+3

<=>(2n+9)-2(n+3) chia hết n+3

<=>(2n+9)-(2n+6) chia hết n+3

<=>3 chia hết n+3

<=>n+3 thuộc {1;3}

<=>n=0

Vậy n = 0

b) Ta có 3n-1 chia hết cho 3-2n

=> 6n-2 chia hết cho 3-2n

=> 3(3-2n)-11 chia hết cho 3-2n

=> 11 chia hết cho 3-2n

=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}

• 3-2n=1 => n=1

• 3-2n=11=> n ko là số tự nhiên

Vậy n=1

c) (15 - 4n) chia hết cho n

=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}

d)  n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5 

e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 = 

13n-1-2

=> n-1 là ước dương của 13

=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13

=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12

Mà n thuộc N và n<8 => n=0 hoặc n=2

g)

6n+9⋮4n−1

⇒2.(6n+9)⋮4n−1

⇒12n+18⋮4n−1

⇒12n−3+21⋮4n−1

⇒3.(4n−1)+21⋮4n−1

Vì 3.(4n−1)⋮4n−1⇒21⋮4n−1

Mà 4n - 1 chia 4 dư 3; 4n−1≥−1 do n∈N

⇒4n−1∈{−1;3;7}

⇒4n∈{0;4;8}

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

23 tháng 11 2017

dài qá, lm 1 câu thôi, chỗ cn lại tương tự

Ta có :

\(n+8⋮n+3\)

Mà \(n+3⋮n+3\)

\(\Leftrightarrow5⋮n+3\)

\(\Leftrightarrow n+3\inƯ\left(5\right)\)

\(\Leftrightarrow\orbr{\begin{cases}n+3=1\\n+3=5\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}n=-2\\n=2\end{cases}}\)

Vậy ..

28 tháng 10 2018

sai roi ban oi

3 tháng 3 2020

mọi người ơi giúp mình với mình đang cần gấp

3 tháng 3 2020

A = (x - 5) + (x - 5 + x) - (5 - x + 5) với x = -3

Thay x = -3 vào biểu thức:

A = [(-3) - 5) + [(-3) - 5 + (-3)] - [5 - (-3) + 5]

A = -32

7 tháng 11 2016

n+13 chia hết cho n-5

suy ra (n-5)+18 chia het co n-5

ma n-5 ciha het cho n-5

suy ra 18 chia het cho n-5

n-5thuoc uoc cua 18

tu do tinh ra va cac cau sau lm tuong tu

 

7 tháng 11 2016

mk lm dung day ,yen tam

14 tháng 3 2020

a) ta có 2n+3=2(n+2)-1

=> 1 chia hết cho n+2

n nguyên => n+2 nguyên => n+1 thuộc Ư (1)={-1;1}
Nếu n+1=-1 => n=-2

Nếu n+1=1 => n=0

Vậy n={-2;0}

b) Ta có n2+2n+5=n(n+2)+5

=> 5 chia hết cho n+2

n nguyên => n+2 nguyên => n+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng

n+2-5-115
n-7-3-13
14 tháng 3 2020

cảm ơn nhiều nha!

17 tháng 1 2016

-8(-7)+(-3).(-5)-(-4).9+2(-6)

=35+15-(-36)+(-12)

=74

15(-3)-(-7).(+2)+4.(-6)-7(-9)

=-45-(-14)+ (-24)-(-63)

8

17 tháng 1 2016

n+15 chia het cho n-2

n-2+17 chia het cho n-2

suy ra 17 chia hết cho n-2

n-2-17-1117
n-1513

19

 

mấy cau sau tuong tu

 

18 tháng 10 2015

a) Ta có  4n-5=4n-2+3 

Do 4n-5 chia hết cho 2n-1 nên 4n-2+3 chia hết cho 2n-1

=> 3 chia hết cho n-1

=> n-1 thuộc Ư(3)={1;3;-1;-3}

=>n={2;4;0;-2}

Do n thuộc N nên n={2;4;0}

các câu còn lại tương tự  

tick nha