cho hình chữ nhật ABCD kẻ CM và AN cùng vuông góc BD
a) chững minh BN=DM
b) chứng minh hình thoi AMCN là hình bình hành
c) Qua B lẻ Bx vuông góc với BD.Gọi I là trung điểm của BC.MI cắt Bx tại K.hình thoi BMCK là hình gì? vì sao?
d) Hình chữ nhật ABCD có thêm điều kiện gì để BMCK là hình vuông
thông cảm vẽ hình hộ tui nhé :))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMD vuông tại M và ΔCNB vuông tại N có
AD=CB
\(\widehat{ADM}=\widehat{CBN}\)
Do đó: ΔAMD=ΔCNB
Suy ra: AM=CN
a) Ta có :
AB // CD ( Vì ABCD là hcn )
mà N \(\in\) AB
M \(\in\) DC
=) AN // MD
Xét hcn ABCD có :
M là tđ của cạnh DC
NA // MD
=) N là tđ của AB
=) NA = NB
mà AM = MC
lại có : AB = DC ( vì ABCD là hcn )
=) AN = DM
mà AN // DM
=) ANMD là hbh
mà góc M = 90o
=) ANMD là hcn
b)
Ta có : AN = MC ( Vì cx = MD )
mà AN // DC
=) ANCM là hbh
câu c) chút nữa mình làm bn vẽ hình trước
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
a: Xét ΔADM vuông tại M và ΔCBN vuông tại N có
AD=BC
\(\widehat{ADM}=\widehat{CBN}\)
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành