tìm x, biết :
(3-x)(x2+1)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Rightarrow x\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
b) \(\Rightarrow x\left(x^2-4\right)=0\Rightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
c) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
d) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
e) \(\Rightarrow2x^2-10x-3x-2x^2=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
f) \(\Rightarrow\left(x-2012\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2012\\x=\dfrac{1}{5}\end{matrix}\right.\)
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
(x-1)2-1+x2-(1-x)(x+3)=0
⇒x2-2x+1-1+x2-x(1-x)+3(1-x)=0
⇒x2-2x+1-1+x2-x+x2+3-3x=0
⇒3x2-6x+3=0
⇒3(x2-2x+1)=0
⇒x2-2x+1=0
⇒(x-1)2=0
⇒x-1=0
⇒x=1
Lời giải:
$(x-1)^2-1+x^2-(1-x)(x+3)=0$
$\Leftrightarrow (x^2-2x+1)-1+x^2-(3-x^2-2x)=0$
$\Leftrightarrow x^2-2x+1-1+x^2-3+x^2+2x=0$
$\Leftrightarrow 3x^2-3=0$
$\Leftrightarrow x^2-1=0$
$\Leftrightarrow (x-1)(x+1)=0$
$\Leftrightarrow x=1$ hoặc $x=-1$
\(b,3x+x^2=0\\ \Rightarrow x\left(3+x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\\ c,\left(x-1\right)\left(x-3\right)< 0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1< 0\\x-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1>0\\x-3< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 1\\x>3\left(vô.lí\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x>1\\x< 3\end{matrix}\right.\end{matrix}\right.\)
Vậy 1<x<3
\(\left(3-x\right)\left(x^2+1\right)=0\)
\(\Rightarrow x=3\)(do \(x^2+1\ge1>0\forall x\))
\(\left(3-x\right)\left(x^2+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}3-x=0\\x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x^2=-1\left(vôlí\right)\end{matrix}\right.\)
Vậy \(x=3\)