K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 1 2017

1)

Dễ thấy \(f(x)=\sqrt{2}-\sqrt{x-1}\leq \sqrt{2}\) nên chỉ cần $0<k<\sqrt{2}$ là bất phương trình có nghiệm

2)

Xét \(y=\sqrt{x^2-1}+\sqrt{x+1}; y'=0\Leftrightarrow x=-1\)

Do đó $y_{min}=0$, hàm số không tồn tại max. Với đk $m$ để phương trình có nghiệm thì chỉ cần $m\geq 0$ (PT luôn có nghiệm khi $m$ nằm trong khoảng max, min)

NV
24 tháng 10 2019

ĐKXĐ: \(x\ge0;x\ne1\)

\(A=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\frac{\left(x-1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}=-\sqrt{x}\left(\sqrt{x}-1\right)\)

\(=\sqrt{x}\left(1-\sqrt{x}\right)\)

\(0< x< 1\Rightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\1-\sqrt{x}>0\end{matrix}\right.\) \(\Rightarrow\sqrt{x}\left(1-\sqrt{x}\right)>0\Rightarrow A>0\)

\(A< 0\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)< 0\Leftrightarrow1-\sqrt{x}< 0\Rightarrow x>1\)

\(A>-2\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)+2>0\Leftrightarrow-x+\sqrt{x}+2>0\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(2-\sqrt{x}\right)>0\Leftrightarrow2-\sqrt{x}>0\Rightarrow x< 4\)

Kết hợp ĐKXĐ \(\Rightarrow\left\{{}\begin{matrix}0\le x< 4\\x\ne1\end{matrix}\right.\)

\(A< -2x\Leftrightarrow\sqrt{x}-x< -2x\Leftrightarrow x+\sqrt{x}< 0\) (vô nghiệm \(\forall x\ge0\))

\(A>2\sqrt{x}\Leftrightarrow\sqrt{x}-x>2\sqrt{x}\Leftrightarrow x+\sqrt{x}< 0\) giống như trên

\(A=-x+\sqrt{x}=-x+\sqrt{x}-\frac{1}{4}+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

\(A_{max}=\frac{1}{4}\) khi \(\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)

9 tháng 12 2017

lớp 10 học trường mô đây ?

NV
5 tháng 7 2020

1/

\(B=\frac{1}{\sqrt{2}}\left(\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\right)\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{7}+1-\sqrt{7}+1\right)=\sqrt{2}\)

\(\Rightarrow B>1\)

\(\left\{{}\begin{matrix}\sqrt[3]{4+\sqrt{7}}< \sqrt[3]{4+\sqrt{16}}=2\\\sqrt[3]{4-\sqrt{7}}>\sqrt[3]{4-\sqrt{9}}=1\end{matrix}\right.\)

\(\Rightarrow A=\sqrt[4]{4+\sqrt{7}}-\sqrt[3]{4-\sqrt{7}}< 2-1=1\)

\(\Rightarrow A< B\)

2/ ĐKXĐ: \(x\ge-3\)

Đặt \(\sqrt{x+3}=a\ge0\) ta được:

\(2x^2+a^2=3ax\Leftrightarrow2x^2-3ax+a^2=0\)

\(\Leftrightarrow\left(x-a\right)\left(2x-a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=a\\2x=a\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{x+3}\\2x=\sqrt{x+3}\end{matrix}\right.\) (\(x\ge0\))

\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+3\\4x^2=x+3\end{matrix}\right.\) \(\Leftrightarrow...\)

5 tháng 7 2020

Từ chỗ \(\sqrt[3]{4-\sqrt{7}}>1\Rightarrow-\sqrt[3]{4-\sqrt{7}}< -1\) rồi thay vào thì đúng hơn nhỉ :)

(A < 3 < 1 = B)

ở đâu zậy

NV
9 tháng 5 2019

ĐKXĐ \(x\ge0\)

\(\Leftrightarrow\sqrt{x}+\sqrt{x+7}+2\sqrt{x^2+7x}+2x+7=42\)

Đặt \(\sqrt{x}+\sqrt{x+7}=a>0\Rightarrow a^2=2x+7+2\sqrt{x^2+7x}\)

\(a+a^2=42\Leftrightarrow a^2+a-42=0\Rightarrow\left[{}\begin{matrix}a=6\\a=-7< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\sqrt{x+7}=6\Leftrightarrow2x+7+2\sqrt{x^2+7x}=36\)

\(\Leftrightarrow2\sqrt{x^2+7x}=29-2x\) \(\left(x\le\frac{29}{2}\right)\)

\(\Leftrightarrow4\left(x^2+7x\right)=\left(29-2x\right)^2\)

\(\Leftrightarrow4x^2+28x=841-116x+4x^2\)

\(\Leftrightarrow144x=841\)

\(\Rightarrow x=\frac{841}{144}\)

9 tháng 5 2019

thanks

25 tháng 7 2018

Hỏi đáp Toán

11 tháng 8 2018

\(1.\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}=2-\sqrt{3}+1+\sqrt{3}=3\) \(2a.\sqrt{x^2-2x+1}=7\)

\(x^2-2x+1=49\)

\(x^2-2x-48=0\)

\(\left(x+6\right)\left(x-8\right)=0\)

\(x=8orx=-6\)

\(b.\sqrt{4x-20}-3\sqrt{\dfrac{x-5}{9}}=\sqrt{1-x}\)

\(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)

\(x-5=1-x\)

\(x=3\left(KTM\right)\)

KL.............