cho a,b,c là 3 số nguyên dương. Tìm gtnn
P=(a+b+c)(1/a+1/b+1/c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(a+\frac{1}{a}=x\inℕ^∗\)
\(b+\frac{1}{b}=y\inℕ^∗\)
\(c+\frac{1}{c}=z\inℕ^∗\)
Em xem lại đề bài nhé! Nếu đề thế này thì rất là không có ý nghĩa.
\(P=\dfrac{5a+10b+15c}{4}+\left(\dfrac{3}{a}+\dfrac{3a}{4}\right)+\left(\dfrac{9}{2b}+\dfrac{b}{2}\right)+\left(\dfrac{4}{c}+\dfrac{c}{4}\right)\)
\(\ge\dfrac{5\left(a+2b+3c\right)}{4}+2\sqrt{\dfrac{3}{a}.\dfrac{3a}{4}}+2\sqrt{\dfrac{9}{2b}.\dfrac{b}{2}}+2\sqrt{\dfrac{4}{c}.\dfrac{c}{4}}\)
\(\Leftrightarrow P\ge\dfrac{5.20}{4}+3+3+2=33\)
Dấu "=" xảy ra khi a=2;b=3;c=4
Vậy \(P_{min}=33\)
Ta có công thức:
\(\frac{a}{b}< a\Rightarrow\frac{a}{b}=\frac{1}{k+1}-\frac{a-r}{b\left(k-1\right)}\)
=>1/a+1/b+1/c=4/5=>1/2+3/10==1/2+1/4+1/20=4/5.
Nếu ko hiểu thì vào câu hỏi tương tự hoặc tra mạng nhé.
3. Vì tích của 3 số bất kì là 1 số dương nên chắc chắn trong 25 số nguyên sẽ có ít nhất 2 số dương.( vì nếu cả 25 số đều âm thì tích của 3 số bất kì sẽ không thể là 1 số dương )
Còn 24 số còn lại ta chia thành 8 , nhóm mỗi nhóm có 3 thừa số . Theo đề bài , mỗi nhóm đều có tích là một số dương nên tích của 8 nhóm tức là tích của 24 số là 1 số dương .Nhân số này vs số dương đã tách riêng ra từ đầu ta được tích của 25 số là 1 số dương.
Áp dụng AM - GM
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow P\ge9\)
(Dấu "="\(\Leftrightarrow a=b=c\))
Phá ngoặc ra ông giáo ạ:3
\(P=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)
\(=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
\(\ge3+3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\) ( hồn nhiên cô si )
\(\ge3+3\sqrt[3]{\frac{8abc}{abc}}=9\) ( hồn nhiên cô si tiếp )
Dấu "=" xảy ra tại a=b=c