K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2020

Áp dụng AM - GM

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow P\ge9\)

(Dấu "="\(\Leftrightarrow a=b=c\))

3 tháng 1 2020

Phá ngoặc ra ông giáo ạ:3

\(P=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)

\(\ge3+3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\) ( hồn nhiên cô si )

\(\ge3+3\sqrt[3]{\frac{8abc}{abc}}=9\) ( hồn nhiên cô si tiếp )

Dấu "=" xảy ra tại a=b=c

28 tháng 11 2019

Đặt: \(a+\frac{1}{a}=x\inℕ^∗\)

\(b+\frac{1}{b}=y\inℕ^∗\)

\(c+\frac{1}{c}=z\inℕ^∗\)

Em xem lại đề bài nhé! Nếu đề thế này thì rất là không có ý nghĩa.

28 tháng 11 2019

Dạ là tìm 3 số hữu tỉ dương a,b,c ạ e xin lỗi e quên mất ạ

3 tháng 7 2021

\(P=\dfrac{5a+10b+15c}{4}+\left(\dfrac{3}{a}+\dfrac{3a}{4}\right)+\left(\dfrac{9}{2b}+\dfrac{b}{2}\right)+\left(\dfrac{4}{c}+\dfrac{c}{4}\right)\)

\(\ge\dfrac{5\left(a+2b+3c\right)}{4}+2\sqrt{\dfrac{3}{a}.\dfrac{3a}{4}}+2\sqrt{\dfrac{9}{2b}.\dfrac{b}{2}}+2\sqrt{\dfrac{4}{c}.\dfrac{c}{4}}\)

\(\Leftrightarrow P\ge\dfrac{5.20}{4}+3+3+2=33\)

Dấu "=" xảy ra khi a=2;b=3;c=4

Vậy \(P_{min}=33\)

12 tháng 5 2018

Ta có công thức:

\(\frac{a}{b}< a\Rightarrow\frac{a}{b}=\frac{1}{k+1}-\frac{a-r}{b\left(k-1\right)}\)

=>1/a+1/b+1/c=4/5=>1/2+3/10==1/2+1/4+1/20=4/5.

Nếu ko hiểu thì vào câu hỏi tương tự hoặc tra mạng nhé.

24 tháng 1 2022

mik viết bị thiếu á chứ 3/x lớn hơn hoặc bằng á 

 

3 tháng 7 2016

3. Vì tích của 3 số bất kì là 1 số dương nên chắc chắn trong 25 số nguyên sẽ có ít nhất 2 số dương.( vì nếu cả 25 số đều âm thì tích của 3 số bất kì sẽ không thể là 1 số dương )

Còn 24 số còn lại ta chia thành 8 , nhóm mỗi nhóm có 3 thừa số . Theo đề bài , mỗi nhóm đều có tích là một số dương nên tích của 8 nhóm tức là tích của 24 số là 1 số dương .Nhân số này vs số dương đã tách riêng ra từ đầu ta được tích của 25 số là 1 số dương.