K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2020

dit me

3 tháng 1 2020

Đặt \(\left(\frac{a}{b};\frac{c}{b}\right)=\left(x;y\right)\) ta có \(\frac{1}{x}+\frac{1}{y}=2\)

\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{\frac{a}{b}+1}{\frac{2a}{b}-1}+\frac{\frac{c}{b}+1}{\frac{2c}{b}-1}=\frac{x+1}{2x-1}+\frac{y+1}{2y-1}\)

\(=1+\frac{3}{2}\left(\frac{1}{2x-1}+\frac{1}{2y-1}\right)=1+\frac{3}{2}.\frac{2x+2y-2}{4xy-2\left(x+y\right)+1}=1+3.\frac{x+y-1}{1}\ge4\)

Do \(\frac{1}{x}+\frac{1}{y}=2\Rightarrow x+y\ge2\)

đpcm

10 tháng 8 2016

Bài 1 :

a) Ta có : \(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Áp dụng bđt Cauchy : \(a+b\ge2\sqrt{ab}\) , \(b+c\ge2\sqrt{bc}\) , \(c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) hay \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)

 

3 tháng 12 2017

Có \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=4\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

20 tháng 9 2019

Ta có: \(\frac{a}{a'}+\frac{b}{b'}=1\)

\(\Rightarrow\frac{a}{a'}.\frac{b}{b'}+\frac{b'}{b}.\frac{b}{b'}=\frac{b}{b'}.\)

\(\Rightarrow\frac{ab}{a'b'}+1=\frac{b}{b'}\) (1).

\(\frac{b}{b'}+\frac{c'}{c}=1\)

\(\Rightarrow\frac{b}{b'}=1-\frac{c'}{c}\) (2).

Từ (1) và (2) => \(\frac{ab}{a'b'}=-\frac{c'}{c}\)

\(\Rightarrow abc=-a'b'c'\)

\(\Rightarrow abc+a'b'c'=0\left(đpcm\right).\)

Vậy \(abc+a'b'c'=0.\)

Chúc bạn học tốt!

20 tháng 9 2019

Không có gì nhé.

9 tháng 11 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

a, Ta có:\(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b.\left(k-1\right)}{b.\left(k+1\right)}=\frac{k-1}{k+1}\left(1\right)\)

Lại có \(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d.\left(k-1\right)}{d.\left(k+1\right)}=\frac{k-1}{k+1}\left(2\right)\)

Từ (1) và (2) => ĐPCM

b, Ta có \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)

Lại có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) => ĐPCM

12 tháng 11 2018

đi mà làm

17 tháng 8 2016

Đề đúng : Cho a,b,c > 0 và \(a+b+c\le1\)

CMR : \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)

Đặt \(x=a^2+2bc,y=b^2+2ac,z=c^2+2ab\)

Áp dụng bđt Bunhiacopxki , ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(\sqrt{\frac{1}{x}.x}+\sqrt{\frac{1}{y}.y}+\sqrt{\frac{1}{z}.z}\right)^2=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) hay \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\) 

 

17 tháng 8 2016

Ta thấy: \(\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)=\left(a+b+c\right)^2\le1\)

Sử dụng Cosi 3 số ta suy ra

\(VT\ge\left[\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)\right]\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\right)\)

\(\ge3\sqrt[3]{\left(a^2+2bc\right)\left(b^2+2ac\right)\left(c^2+2ab\right)}\cdot3\sqrt[3]{\frac{1}{a^2+2bc}\cdot\frac{1}{b^2+2ac}\cdot\frac{1}{c^2+2ab}}=9\) (Đpcm)

Đẳng thức xảy ra khi\(\begin{cases}a+b+c=1\\a^2+2bc=b^2+2ac=c^2+2ab\end{cases}\)\(\Leftrightarrow a=b=c=\frac{1}{3}\)

\(\Leftrightarrow\left(2a+13b\right)\left(3c-7d\right)=\left(2c+13d\right)\left(3a-7b\right)\)

\(\Leftrightarrow6ac-14ad+39bc-91bd=6ac-14bc+39ad-91bd\)

\(\Leftrightarrow-14ad+14bc=39ad-39bc\)

\(\Leftrightarrow-14\left(ad-bc\right)=39\left(ad-bc\right)\)

=>ad-bc=0

=>ad=bc

hay a/b=c/d

 

Bài 22, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\) \(B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\) 1/ So sánh A và B, A2 và A.B 2/ Chứng minh A<\(\frac{1}{10}\) Bài 21, Cho \(A=\frac{1\cdot3\cdot5\cdot...\cdot4095}{2\cdot4\cdot6\cdot...\cdot4096}\) \(B=\frac{2\cdot4\cdot6\cdot...\cdot4096}{1\cdot3\cdot5\cdot...\cdot4097}\) 1/ So sánh A2 và A.B 2/ Chứng minh A<\(\frac{1}{64}\) Bài 21, Cho...
Đọc tiếp

Bài 22, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\)

\(B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)

1/ So sánh A và B, A2 và A.B

2/ Chứng minh A<\(\frac{1}{10}\)

Bài 21, Cho \(A=\frac{1\cdot3\cdot5\cdot...\cdot4095}{2\cdot4\cdot6\cdot...\cdot4096}\)

\(B=\frac{2\cdot4\cdot6\cdot...\cdot4096}{1\cdot3\cdot5\cdot...\cdot4097}\)

1/ So sánh A2 và A.B

2/ Chứng minh A<\(\frac{1}{64}\)

Bài 21, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{2499}{2500}\)

Chứng minh A<\(\frac{1}{49}\)

Bài 22, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\)

\(B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)

\(C=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{98}{99}\)

1/ So sánh A, B, C

2/Chứng minh \(A\cdot C< A^2< \frac{1}{10}\)

3/Chứng minh \(\frac{1}{15}< A< \frac{1}{10}\)

0
3 tháng 10 2018

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

\(\Rightarrow\frac{7b^2k^2+3bkb}{11b^2k^2-8b^2}=\frac{7d^2k^2+3dkd}{11d^2k^2-8d^2}\)

\(\Rightarrow\frac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\frac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}\)

\(\Rightarrow\frac{7k^2+3k}{11k^2-8}=\frac{7k^2+3k}{11k^2-8}\left(đpcm\right)\)