K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TL
23 tháng 12 2019

Box GDCD bị loạn thật rồi!!!!

23 tháng 12 2019

Đừng tưởng t HIỀN mà dễ bắt nạt nhé ! haleuleu 2 thanh niên trẩu : trinh gia long, HISINOMA KINIMADO . Đúng là cái bọn trẻ trâu t đọc bài phốt mà mắc cười quá, cười đau ruột luôn. Hoc24 độ này nhiều trẩu quá, phải dẹp thôi ms được. ^ ^

Phốt t, tùy chúng m. chúng maỳ phốt t, thì kệ chúng m, chắc t quan tâm. Dăm ba cái thể loại động tí phốt ng ta gọi là = TRẨU. Cái thể loại mở miện ra là phốt í HÃY XEM LẠI BẢN THÂN MÌNH XEM XEM CÓ XỨNG ĐÁNG LÀM NGƯỜI, NÓI LỜI ĐẠO LÍ K NHÉ ? Phốt mới chả phiếc

Kết luận: trao danh hiệu TRẨU

Haha

NV
2 tháng 1 2022

Phương trình hoành độ giao điểm (d) và (P):

\(x^2-2x-3=ax-a-3\)

\(\Leftrightarrow x^2-\left(a+2\right)x+a=0\) 

\(\Delta=\left(a+2\right)^2-4a=a^2+4>0;\forall a\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=a+2\\x_Ax_B=a\end{matrix}\right.\)

Mặt khác do A, B thuộc (d) nên: \(\left\{{}\begin{matrix}y_A=ax_A-a-3\\y_B=ax_B-a-3\end{matrix}\right.\)

\(y_A+y_B=0\)

\(\Leftrightarrow a\left(x_A+x_B\right)-2a-6=0\)

\(\Leftrightarrow a\left(a+2\right)-2a-6=0\)

\(\Leftrightarrow a^2-6=0\)

\(\Leftrightarrow a=\pm\sqrt{6}\)

22 tháng 11 2019

Theo ĐLBTKL , ta có:

\(\text{ mAl+mCuo = mCu + mAl2O3}\)

\(\rightarrow\)\(\text{27 + 60= 40 + mAl2O3}\)

\(\rightarrow\)\(\text{27+60-40 = mAl2O3}\)

\(\rightarrow\)\(\text{mAl2O3 = 47(g)}\)

22 tháng 11 2019
https://i.imgur.com/7J6vOee.jpg
17 tháng 1 2022

Câu 16.

undefined

Hình vẽ tương đối thôi nha!!!

Bảo toàn động lương ta có:

\(\overrightarrow{p}=\overrightarrow{p_1}+\overrightarrow{p_2}\)

\(\Rightarrow p^2=p_2^2-p_1^2\)\(\Rightarrow p_2=\sqrt{p^2+p_1^2}\)

\(\Rightarrow m_2\cdot v_2=\sqrt{\left(m_1+m_2\right)\cdot v+m_1\cdot v_1}\)

\(\Rightarrow0,3\cdot v_2=\sqrt{[\left(0,5+0,3\right)\cdot3]^2+(0,5\cdot4)^2}=3,124\)

\(\Rightarrow v_2=10,41\)m/s

11 tháng 1 2023

1A(adj)

2D(n)

3A(adj)

4C(n)

5D(adj)

6C(adj)

7B(n)(Tham khảo c7)

8A(n)

9C(n)

10B(v)

11A(adv)

11 tháng 1 2023

3B(n)(tham khảo từ câu trắc nghiệm tương tự)

20 tháng 12 2022

Giúp mình với😓😓

20 tháng 12 2022

Giúp mình đi 😢😢

22 tháng 1 2022

\(\dfrac{x-3}{3x-5}< \dfrac{3x-5}{x-3}.\left(x\ne3;x\ne\dfrac{5}{3}\right).\)

\(\Leftrightarrow\dfrac{x-3}{3x-5}-\dfrac{3x-5}{x-3}< 0.\Leftrightarrow\dfrac{\left(x-3\right)^2-\left(3x-5\right)^2}{\left(3x-5\right)\left(x-3\right)}< 0.\)

\(\Leftrightarrow\dfrac{x^2-6x+9-\left(9x^2-30x+25\right)}{\left(3x-5\right)\left(x-3\right)}< 0.\) \(\Leftrightarrow\dfrac{x^2-6x+9-9x^2+30x-25}{\left(3x-5\right)\left(x-3\right)}< 0.\)

\(\Leftrightarrow\dfrac{-8x^2+24x-16}{\left(3x-5\right)\left(x-3\right)}< 0.\Leftrightarrow\dfrac{8x^2-24x+16}{\left(3x-5\right)\left(x-3\right)}>0.\)

\(\Leftrightarrow\dfrac{8\left(x^2-3x+2\right)}{\left(3x-5\right)\left(x-3\right)}>0.\Leftrightarrow\dfrac{\left(x-2\right)\left(x-1\right)}{\left(3x-5\right)\left(x-3\right)}>0.\)

Đặt \(\dfrac{\left(x-2\right)\left(x-1\right)}{\left(3x-5\right)\left(x-3\right)}=f\left(x\right).\)

Lập bảng xét dấu:

x\(-\infty\)              1                   \(\dfrac{5}{3}\)                      2                       3                       \(+\infty\)
x - 2          -           |       -           |         -             0           +            |            +
x - 1         -            0       +         |        +              |          +             |             +
3x - 5            -         |          -        0         +            |          +             |             +
x - 3             -        |           -       |          -             |           -             0            +
f (x)           +         0          -      ||          +            0           -             ||            +

Vậy \(\dfrac{\left(x-2\right)\left(x-1\right)}{\left(3x-5\right)\left(x-3\right)}=f\left(x\right)>0.\) \(\Leftrightarrow x\in\left(-\infty;1\right)\cup\left(\dfrac{5}{3};2\right)\cup\left(3;+\infty\right).\)

 

22 tháng 1 2022

a)

      \(\left\{{}\begin{matrix}2x^2+7x-4\ge x^2-4\\\dfrac{2x-1}{x^2+x-2}< \dfrac{2x-5}{x^2+x-2}\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x^2+7\ge0\\\dfrac{2x-5-2x+1}{x^2+x-2}>0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x\left(x+7\right)\ge0\\\dfrac{-4}{x^2+x-2}>0\end{matrix}\right.\)

 => \(\left\{{}\begin{matrix}x\left(x+7\right)\ge0\\\left(x-1\right)\left(x+2\right)< 0\end{matrix}\right.\)

ta có x+2>x-1

=>x-1<0 và x+2 >0 để thỏa điều kiện =>x<1 và x>-2(hay -2<x<1)(1)

vì -2<x<1 nên x+7>0

=>x\(\ge\)0 để thỏa điều kiện(2)
từ (1) và (2) =>0\(\le\)x<1 
b)

      \(\left\{{}\begin{matrix}\left(x-3\right)\left(\sqrt{2}-x\right)>0\\4x-3< 2\left(x+3\right)\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}\left(x-3\right)\left(\sqrt{2}-x\right)>0\\2x-9< 0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}\left(x-3\right)\left(\sqrt{2}-x\right)>0\\x< \dfrac{9}{2}\end{matrix}\right.\)

có 2 TH xảy ra để thỏa điều kiện

TH1 (x-3)<0 và (\(\sqrt{2}\)-x)<0=>\(\sqrt{2}\)<x<3(nhận)

TH2 (x-3)>0 và (\(\sqrt{2}\)-x)>0=>3<x<\(\sqrt{2}\)(loại)

em nghĩ như nào làm như v thôi có gì sai chị xem và sửa hộ em nhá bucminh