Cho tam giác
ABC
vuông tại
A
, có
AB = 3 cm , AC=4cm .
Vẽ đường cao
AH
của
tam giác. Tỉ số diện tích của hai tam giác
ABC
và
HAC
bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{4}{8}=\dfrac{1}{2}\)
a, Xét Δ CMN và Δ CAB, có :
\(\widehat{CMN}=\widehat{CAB}=90^o\)
\(\widehat{MCN}=\widehat{ACB}\) (góc chung)
=> Δ CMN ∾ Δ CAB (g.g)
b, Ta có : Δ CMN ∾ Δ CAB (cmt)
=> \(\dfrac{CM}{CA}=\dfrac{MN}{AB}\)
=> \(CM.AB=MN.CA\)
c, Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)
=> \(15^2=9^2+AC^2\)
=> \(15^2-9^2=AC^2\)
=> \(144=AC^2\)
=> AC = 12 (cm)
Ta có : Δ CMN ∾ Δ CAB (cmt)
=> \(\dfrac{NC}{BC}=\dfrac{CM}{CA}\)
=> \(\dfrac{NC}{15}=\dfrac{4}{12}\)
=> \(NC=\dfrac{15.4}{12}=5\left(cm\right)\)
Xét Δ MNC vuông tại M, có :
\(NC^2=NM^2+MC^2\)
=> \(5^2=NM^2+4^2\)
=> \(NM^2=9\)
=> NM = 3 (cm)
Xét Δ CMN và Δ CAB, có :
\(\dfrac{S_{\Delta_{CMN}}}{S_{\Delta_{CAB}}}=\dfrac{\dfrac{1}{2}.CM.MN}{\dfrac{1}{2}.AC.AB}=\dfrac{4.3}{12.9}=\dfrac{1}{9}\)
Xét tam giác CMN và tam giác CAB có
góc C chung
góc BAC = góc CMN = 90 độ
=> tam giác CMN đồng dạng vs tam giác CAB
b) từ tam giác CMN ~ tam giác CAB ( cmt )
=> CM/AC= MN/AB => 4/12= MN/9 => MN = 3
c) Scmn/ Scab = ( MN/AB )^2 = 1/9
1, cho tam giác ABC , góc B= 60 , AB= 6 cm, BC= 14 cm . trên BC lấy điểm D sao cho góc BAD = 60 độ . gọi H là trung điểm BD
a) tính độ dài HD
b) chứng minh rằng tam giác DAC can
c) tam giác ABC là tam giác gì ?
d) CMR : AB^2 + CH^2 = AC^2 + BH ^2
2,tim x,y,zbiết :
a) 3(x-2) - 4(2x+1) - 5(2x+3) = 50
b) $$ :( 4- 1/3 I 2x +1I = 21/22
c) 3z-2y /37 = 5y- 3z / 15= 2z- 5x/2 va 10x -3y - 2z = -4
Gọi đường cao chung của 2 tam giác ABD và ACD là AH
Xét tam giác ABC có:
AD là đường phân giác
=>\(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)
=>\(\dfrac{DB}{DB+DC}=\dfrac{AB}{AB+AC}\)
=>\(\dfrac{DB}{BC}=\dfrac{6}{6+4}\)
=>\(\dfrac{DB}{5}=\dfrac{6}{10}\)
=>DB=3cm
CMTT:DC=2cm
Ta có:\(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{\dfrac{1}{2}.AH.BD}{\dfrac{1}{2}.AH.DC}=\dfrac{BD}{DC}=\dfrac{3}{2}\)
-Xét △ABC có: AD là đường phân giác (gt).
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{6}{4}=\dfrac{3}{2}\) (định lí đường phân giác).
\(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{DB}{DC}=\dfrac{3}{2}\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: BC=căn 3^2+4^2=5cm
AH=3*4/5=2,4cm
c: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
=>S AHB/S CHA=(AB/CA)^2=9/16
Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
Áp dụng HTL: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{9}+\dfrac{1}{16}=\dfrac{25}{144}\)
\(\Rightarrow AH^2=\dfrac{144}{25}\Rightarrow AH=\dfrac{12}{5}\)
Áp dụng HTL: \(HC=\dfrac{AC^2}{BC}=3,2\left(cm\right)\)
Vậy \(\dfrac{S_{ABC}}{S_{HAC}}=\dfrac{AB\cdot AC}{AH\cdot HC}=\dfrac{12}{3,2\cdot2,4}=\dfrac{25}{16}\)