K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

Áp dụng HTL: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{9}+\dfrac{1}{16}=\dfrac{25}{144}\)

\(\Rightarrow AH^2=\dfrac{144}{25}\Rightarrow AH=\dfrac{12}{5}\)

Áp dụng HTL: \(HC=\dfrac{AC^2}{BC}=3,2\left(cm\right)\)

Vậy \(\dfrac{S_{ABC}}{S_{HAC}}=\dfrac{AB\cdot AC}{AH\cdot HC}=\dfrac{12}{3,2\cdot2,4}=\dfrac{25}{16}\)

10 tháng 10 2021

A,B nằm trên đường tròn

M,C nằm ngoài đường tròn

9 tháng 4 2022

\(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{4}{8}=\dfrac{1}{2}\)

12 tháng 5 2022

a, Xét Δ CMN và Δ CAB, có :

\(\widehat{CMN}=\widehat{CAB}=90^o\)

\(\widehat{MCN}=\widehat{ACB}\) (góc chung)

=> Δ CMN ∾ Δ CAB (g.g)

b, Ta có : Δ CMN ∾ Δ CAB (cmt)

=> \(\dfrac{CM}{CA}=\dfrac{MN}{AB}\)

=> \(CM.AB=MN.CA\)

12 tháng 5 2022

c, Xét Δ ABC vuông tại A, có :

\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)

=> \(15^2=9^2+AC^2\)

=> \(15^2-9^2=AC^2\)

=> \(144=AC^2\)

=> AC = 12 (cm)

Ta có : Δ CMN ∾ Δ CAB  (cmt)

=> \(\dfrac{NC}{BC}=\dfrac{CM}{CA}\)

=> \(\dfrac{NC}{15}=\dfrac{4}{12}\)

=> \(NC=\dfrac{15.4}{12}=5\left(cm\right)\)

Xét Δ MNC vuông tại M, có :

\(NC^2=NM^2+MC^2\)

=> \(5^2=NM^2+4^2\)

=> \(NM^2=9\)

=> NM = 3 (cm)

Xét Δ CMN và Δ CAB, có :

\(\dfrac{S_{\Delta_{CMN}}}{S_{\Delta_{CAB}}}=\dfrac{\dfrac{1}{2}.CM.MN}{\dfrac{1}{2}.AC.AB}=\dfrac{4.3}{12.9}=\dfrac{1}{9}\)

4 tháng 9 2017

8 tháng 4 2016

Xét tam giác CMN và tam giác CAB có

           góc C chung

           góc BAC = góc CMN = 90 độ

=> tam giác CMN đồng dạng vs tam giác CAB

b) từ tam giác CMN ~ tam giác CAB ( cmt )

=> CM/AC= MN/AB => 4/12= MN/9 => MN = 3

c) Scmn/ Scab = ( MN/AB )^2 = 1/9

8 tháng 4 2016

1, cho tam giác ABC , góc B= 60  , AB= 6 cm, BC= 14 cm . trên BC lấy điểm D sao cho góc BAD = 60 độ . gọi H là trung điểm BD 

a) tính độ dài HD 

b) chứng minh rằng tam giác DAC can 

c) tam giác ABC là tam giác gì ?

d) CMR : AB^2 + CH^2 = AC^2 + BH ^2 

 2,tim x,y,zbiết : 

a) 3(x-2) - 4(2x+1) - 5(2x+3) = 50

b) $$ :( 4- 1/3 I 2x +1I = 21/22

c) 3z-2y /37 = 5y- 3z / 15= 2z- 5x/2 va 10x -3y - 2z = -4

16 tháng 2 2022

Gọi đường cao chung của 2 tam giác ABD và ACD là AH

Xét tam giác ABC có:

 AD là đường phân giác

=>\(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)

=>\(\dfrac{DB}{DB+DC}=\dfrac{AB}{AB+AC}\)

=>\(\dfrac{DB}{BC}=\dfrac{6}{6+4}\)

=>\(\dfrac{DB}{5}=\dfrac{6}{10}\)

=>DB=3cm

CMTT:DC=2cm

Ta có:\(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{\dfrac{1}{2}.AH.BD}{\dfrac{1}{2}.AH.DC}=\dfrac{BD}{DC}=\dfrac{3}{2}\)

16 tháng 2 2022

-Xét △ABC có: AD là đường phân giác (gt).

\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{6}{4}=\dfrac{3}{2}\) (định lí đường phân giác).

\(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{DB}{DC}=\dfrac{3}{2}\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: BC=căn 3^2+4^2=5cm

AH=3*4/5=2,4cm

c: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

=>S AHB/S CHA=(AB/CA)^2=9/16