K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2020

1) x - 8 = 3 - 2(x + 4)

<=> x - 8 = 3 - 2x - 8

<=> x + 2x = -5 + 8

<=> 3x = 3

<=> x = 1

Vậy S = {1}

2) 2(x + 3) - 3(x - 1) = 2

<=> 2x + 6 - 3x + 3 = 2

<=> -x = 2 - 9

<=> -x = -7

<=> x = 7

Vậy S = {7}

3) 4(x - 5) - (3x - 1) = x - 19

<=> 4x - 20 - 3x + 1 = x - 19

<=> x - 19 = x - 19

<=> x - x = -19 + 19

<=> 0x = 0

=> pt luôn đúng với mọi x

4) 7 - (x - 2) = 5(2x - 3)

<=> 7 - x + 2 = 10x + 15

<=> -x - 10x = 15 - 9

<=> -11x = 6

<=> x = -6/11

Vậy S = {-6/11}

11 tháng 3 2020

\(5,32-4\left(0,5y-5\right)=3y+2\)

\(\Leftrightarrow32-2y+20-3y-2=0\)

\(\Leftrightarrow-5y+50=0\Leftrightarrow y=10\)

\(6,3\left(x-1\right)-x=2x-3\)

\(\Leftrightarrow3x-3-x-2x+3=0\)

\(\Leftrightarrow0=0\) (luôn đúng )

=> pt vô số nghiệm

\(7,2x-4=-12+3x\)

\(\Leftrightarrow-x=-8\Leftrightarrow x=8\)

\(8,x\left(x-1\right)-x\left(x+3\right)=15\)

\(\Leftrightarrow x^2-x-x^2-3x-15=0\)

\(\Leftrightarrow-4x-15=0\Leftrightarrow x=\frac{-15}{4}\)

\(9,x\left(x-1\right)=x\left(x+3\right)\)

\(\Leftrightarrow x^2-x-x^2-3x=0\Leftrightarrow-4x=0\Leftrightarrow x=0\)

\(10,x\left(2x-3\right)+2=x\left(x-5\right)-1\)

\(\Leftrightarrow2x^2-3x+2-x^2+5x+1=0\)

\(\Leftrightarrow x^2+2x+3=0\) (vô lý)

=> pt vô nghiệm

\(11,\left(x-1\right)\left(x+3\right)=-4\)

\(\Leftrightarrow x^2+2x-3+4=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

\(12,\left(x-2\right)\left(x-5\right)=\left(x-3\right)\left(x-4\right)\)

\(\Leftrightarrow x^2-7x+10=x^2-7x+12\)

\(\Leftrightarrow10=12\) (vô lý)=> pt vô nghiệm

AH
Akai Haruma
Giáo viên
15 tháng 8 2018

Câu a)

Ta có: \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)

\(\Leftrightarrow \sqrt{(x-1)^2}+\sqrt{(x-3)^2}=1\)

\(\Leftrightarrow |x-1|+|x-3|=1(*)\)

Xét các TH sau để phá dấu trị tuyệt đối.

Nếu \(x\geq 3\)

\((*)\Leftrightarrow x-1+x-3=1\Rightarrow 2x=5\Rightarrow x=2,5\) (vô lý)

Nếu $x< 1$

\((*)\Leftrightarrow 1-x+3-x=1\rightarrow 2x=3\Rightarrow x=1,5\) (vô lý)

Nếu $1\leq x< 3$

\((*)\Leftrightarrow x-1+3-x=1\Leftrightarrow 2=1\) (vô lý)

Vậy pt vô nghiệm

Hoặc có thể sử dụng BĐT \(|a|+|b|\geq |a+b|\) thì:

\(1=|x-1|+|x-3|=|x-1|+|3-x|\geq |x-1+3-x|=2\) (vô lý nên pt vô nghiệm)

AH
Akai Haruma
Giáo viên
15 tháng 8 2018

Câu b: ĐK: \(x\geq 1\)

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)

\(\Leftrightarrow \sqrt{(x-1)+2\sqrt{x-1}+1}+\sqrt{(x-1)-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow \sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=2\)

\(\Leftrightarrow |\sqrt{x-1}+1|+|\sqrt{x-1}-1|=2\)

Áp dụng BĐT \(|a|+|b|\geq |a+b|\)

\(\Rightarrow |\sqrt{x-1}+1|+|\sqrt{x-1}-1|=|\sqrt{x-1}+1|+|1-\sqrt{x-1}|\)

\(\geq |\sqrt{x-1}+1+1-\sqrt{x-1}|=2\)

Dấu "=" xảy ra khi \((\sqrt{x-1}+1)(1-\sqrt{x-1})\geq 0\)

\(\Leftrightarrow 1-\sqrt{x-1}\geq 0\)

\(\Leftrightarrow x\leq 2\)

Vậy pt có nghiệm $x$ nằm trong đoạn \([1;2]\)

12 tháng 8 2019

\(4\left(x+1\right)^2+\left(2x+1\right)^2-8\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow4x^2+8x+4+4x^2+4x+1-8x^2+8-11=0\)

\(\Leftrightarrow12x-6=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

8 tháng 3 2018

a. Thay x = -1 vào biểu thức ta được:

\(\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)\)

\(=1-1+1-1+...+1-1\)

\(=0\)

b. Thay x = -1 vào biểu thức ta được:

\(\left(-1\right)^{100}+\left(-1\right)^{99}+\left(-1\right)^{98}+...-1\)

\(=1-1+1-1+...+1-1\)

\(=0\)

8 tháng 3 2018

d.

Thay x = 1 và y= -1 vào biểu thức ta được:

\(1^{10}.\left(-1\right)^{10}+1^9.\left(-1\right)^9+1^8.\left(-1\right)^8+...+1.\left(-1\right)\)

\(=1-1+1-1+...+1-1\)

\(=0\)