K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2020

Nguyễn Thị Trà My lần sau cmt thì phiền đọc kĩ hộ cái nhé=))))

vô số nghiệm not vô nghiệm :)

2 tháng 1 2020

Ta có :

\(\left\{{}\begin{matrix}mx+2y=2m\\x+y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3-x\\mx+2\left(3-x\right)=2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3-x\\mx-2x=2m-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3-x\\x\left(m-2\right)=2m-6\end{matrix}\right.\)

+) Với \(\left\{{}\begin{matrix}m-2=0\\2m-6\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=2\\m\ne3\end{matrix}\right.\) \(\Leftrightarrow m=2\)

Khi đó : \(\left\{{}\begin{matrix}x\in R\\y=3-x\end{matrix}\right.\)

\(\Leftrightarrow\) hệ pt vô số nghiệm

+) \(m-2\ne0\Leftrightarrow m\ne2\)

Khi đó hệ pt có nghiệm duy nhất là :

\(\left\{{}\begin{matrix}x=\frac{2m-6}{m-2}\\y=\frac{m}{m-2}\end{matrix}\right.\)

Vậy....

NV
2 tháng 3 2021

\(\Rightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1\\x+my=m+1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(m+1\right)x=\left(m-1\right)\left(2m+1\right)\\x+my=m+1\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m=\pm1\) hệ có nghiệm duy nhất: \(\left\{{}\begin{matrix}x=\dfrac{2m+1}{m+1}\\y=\dfrac{m}{m+1}\end{matrix}\right.\)

NV
27 tháng 4 2020

Câu 3:

\(\left\{{}\begin{matrix}mx+4y=9\\mx+m^2y=8m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=9\\\left(m^2-4\right)y=8m-9\end{matrix}\right.\)

Để hpt đã cho có nghiệm \(\Leftrightarrow m\ne\pm2\)

Khi đó ta có: \(\left\{{}\begin{matrix}y=\frac{8m-9}{m^2-4}\\x=8-my=8-\frac{8m^2-9m}{m^2-4}=\frac{9m-32}{m^2-4}\end{matrix}\right.\)

\(2x+y+\frac{38}{m^2-4}=3\)

\(\Leftrightarrow\frac{18m-64}{m^2-4}+\frac{8m-9}{m^2-4}+\frac{38}{m^2-4}=3\)

\(\Leftrightarrow26m-35=3m^2-12\)

\(\Leftrightarrow3m^2-26m+23=0\Rightarrow\left[{}\begin{matrix}m=1\\m=\frac{23}{3}\end{matrix}\right.\)

Câu 4:

\(\left\{{}\begin{matrix}m^2x-my=2m^2\\4x-my=m+6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)x=2m^2-m-6\\4x-my=m+6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)x=\left(m-2\right)\left(2m+3\right)\\4x-my=m+6\end{matrix}\right.\)

- Với \(m=-2\) hệ vô nghiệm

- Với \(m=2\) hệ có vô số nghiệm thỏa mãn \(2x-y=4\)

- Với \(m\ne\pm2\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{2m+3}{m+2}\\y=mx-2m=\frac{2m^2+3m-2m^2-4m}{m+2}=\frac{-m}{m+2}\end{matrix}\right.\)

NV
27 tháng 4 2020

Câu 1: ĐKXĐ \(\left\{{}\begin{matrix}x\ne1\\y\ne-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\frac{1}{x-1}=u\\\frac{1}{y+1}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2u+v=7\\5u-2v=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4u+2v=14\\5u-2v=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u=2\\v=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x-1}=2\\\frac{1}{y+1}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-1=\frac{1}{2}\\y+1=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=-\frac{2}{3}\end{matrix}\right.\)

Câu 2:

Để hệ có nghiệm (x;y)=\(\left(2;-1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m.2-\left(m+1\right).\left(-1\right)=m-n\\\left(m+2\right).2+3n\left(-1\right)=2m-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m+n=-1\\3n=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=\frac{7}{3}\\m=\frac{5}{6}\end{matrix}\right.\)

7 tháng 1 2022

thay m=2 vào HPT ta có
\(\left\{{}\begin{matrix}x+2y=2+1\\2x+y=2.2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y=2\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
vậy ..........
 

28 tháng 4 2019

\(\left\{{}\begin{matrix}2x-y=3\left(1\right)\\x^2-y=6\left(2\right)\end{matrix}\right.\)

Trừ vế theo vế của (2) cho (1)\(\Leftrightarrow x^2-2x=3\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}y=3\\y=-5\end{matrix}\right.\)

Vậy (x;y)={(3;3);(-1;-5)}

28 tháng 4 2019

x = y = 3

Thế vào :

a) 2.3-3 = 3

b ) 3^2-3 = 6

\(\left\{{}\begin{matrix}2x-my=m^2\\x+y=2\end{matrix}\right.\)

Để hệ có nghiệm duy nhất thì \(\dfrac{2}{1}\ne\dfrac{-m}{1}\)

=>\(m\ne-2\)

Để hệ có vô số nghiệm thì \(\dfrac{2}{1}=\dfrac{-m}{1}=\dfrac{m^2}{2}\)

=>\(\left\{{}\begin{matrix}m=-2\\m^2=-2m\end{matrix}\right.\Leftrightarrow m=-2\)

Để hệ vô nghiệm thì \(\dfrac{2}{1}=-\dfrac{m}{1}\ne\dfrac{m^2}{2}\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{1}=-\dfrac{m}{1}\\\dfrac{m^2}{2}\ne\dfrac{-m}{1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-2\\m^2\ne-2m\end{matrix}\right.\)

=>\(m\in\varnothing\)