K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2020

x2 + 2y2 + 2xy + 3y - 4 = 0

<=> 4x2 + 8y2 + 8xy + 12y - 16 = 0

<=> (4x2 + 8xy + 4y2) + (4y2 + 12y + 9) = 25

<=> (2x+  2y)2 +  (2y + 3)2 = 25 = 0 + 52 = 32 + 42

Do x;y là số nguyên và 2y + 3 là số lẻ => (2y + 3)2 thuộc {52; 32}

Xét các TH xảy ra:

+)\(\hept{\begin{cases}2x+2y=0\\2y+3=5\end{cases}}\) <=> \(\hept{\begin{cases}x+y=0\\y=1\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=0\\2y+3=-5\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=4\\2y+3=3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=-3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=4\\2y+3=-3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=3\end{cases}}\)

(Tự tính x;y)

18 tháng 3 2023

\(x^2-3xy+2=y\)

\(\Rightarrow x^2+2=y\left(3x+1\right)\left(1\right)\)

\(\Rightarrow\left(x^2+2\right)⋮\left(3x+1\right)\)

\(\Rightarrow\left(9x^2+18\right)⋮\left(3x+1\right)\)

\(\Rightarrow\left[\left(9x^2-1\right)+19\right]⋮\left(3x+1\right)\)

Ta có \(9x^2-1=\left(3x+1\right)\left(3x-1\right)⋮\left(3x+1\right)\)

\(\Rightarrow19⋮\left(3x+1\right)\) nên \(3x+1\inƯ\left(19\right)\)

Lập bảng:

3x+1191-19-1
x60\(\dfrac{-20}{3}\left(l\right)\)\(\dfrac{-2}{3}\left(l\right)\)

Với \(x=6\). (1) \(\Rightarrow y=\dfrac{x^2+2}{3x+1}=\dfrac{6^2+2}{3.6+1}=2\)

Với \(x=0\). (1) \(\Rightarrow y=\dfrac{x^2+2}{3x+1}=\dfrac{0^2+2}{3.0+1}=2\)

Vậy các cặp số (x;y) thỏa điều kiện ở đề bài là \(\left(6;2\right),\left(0;2\right)\)

 

5 tháng 1 2022

\(a,\left\{{}\begin{matrix}\left|x-3y\right|\ge0\\\left|y+4\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3y=-12\\y=-4\end{matrix}\right.\)

\(b,Sửa:\left|x-y-5\right|+\left(y+3\right)^2=0\\ \left\{{}\begin{matrix}\left|x-y-5\right|\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y-5=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+5=2\\y=-3\end{matrix}\right.\)

\(c,\left\{{}\begin{matrix}\left|x+y-1\right|\ge0\\\left(y-2\right)^4\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y=-1\\y=2\end{matrix}\right.\)

\(d,\left\{{}\begin{matrix}\left|x+3y-1\right|\ge0\\3\left|y+2\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-3y=7\\y=-2\end{matrix}\right.\)

\(e,Sửa:\left|2021-x\right|+\left|2y-2022\right|=0\\ \left\{{}\begin{matrix}\left|2021-x\right|\ge0\\\left|2y-2022\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2021-x=0\\2y-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\y=1011\end{matrix}\right.\)