Cho tứ giác ABCD nội tiếp được và có các cạnh a,b,c,d.
C/m: S= \(\sqrt{\left(p-a\right)\left(p-b\right)\left(p-c\right)\left(p-d\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Muốn chứng minh tứ giác ABCD là tứ giác nội tiếp ta cần chứng minh: \(\widehat{ABC}+\widehat{ADC}=180^o\)\(\Leftrightarrow\)
\(\overrightarrow{BA}\left(-1;3\right);\overrightarrow{BC}\left(-2;-4\right)\)
\(cos\widehat{ABC}=cos\left(\overrightarrow{BA};\overrightarrow{BC}\right)\)\(=\dfrac{\left(-1\right).\left(-2\right)+3.\left(-4\right)}{\sqrt{\left(-1\right)^2+3^2}.\sqrt{\left(-2\right)^2+\left(-4\right)^2}}=\dfrac{-\sqrt{2}}{2}\).
Suy ra \(\overrightarrow{ABC}=135^o\).
\(\overrightarrow{DA}\left(4;-2\right);\overrightarrow{DC}\left(3;-9\right)\)
\(cos\widehat{ADC}=\left(\overrightarrow{DA};\overrightarrow{DC}\right)=\dfrac{4.3+\left(-2\right).\left(-9\right)}{\sqrt{4^2+2^2}.\sqrt{\left(3\right)^2+\left(-3\right)^2}}=\dfrac{\sqrt{2}}{2}\)
Suy ra \(\widehat{ADC}=45^o\)
Vậy \(\widehat{ADC}+\widehat{ABC}=135^o+45^o=180^o\).
Vì vậy tứ giác ABCD nội tiếp.
Điểm \(A\left( { - 3;3} \right) \Rightarrow \) hoành độ là -3 và tung độ là 3.
Điểm \(B\left( {3;3} \right) \Rightarrow \) hoành độ là 3 và tung độ là 3.
Điểm \(C\left( {3; - 3} \right) \Rightarrow \) hoành độ là 3 và tung độ là -3.
Điểm \(D\left( { - 3; - 3} \right) \Rightarrow \) hoành độ là -3 và tung độ là -3.
Các cạnh của tứ giác \(ABCD\) bằng nhau và các góc của tứ giác \(ABCD\) bằng nhau và bằng \(90^\circ \).
Với mọi \(0\le a,b,c,d\le1\) thì \(\left(abcd\right)^{\frac{1}{3}}\le\left(abcvd\right)^{\frac{1}{4}}\) hay \(\sqrt[3]{abcd}\le\sqrt[4]{abcd}\)
Tương tự thì \(\sqrt[3]{\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)}\le\sqrt[4]{\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)}\)
\(\Rightarrow P\le\sqrt[4]{abcd}+\sqrt[4]{\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)}\)
\(\le\frac{a+b+c+d}{4}+\frac{4-a-b-c-d}{4}=1\)
Đẳng thức xảy ra tại a=b=c=0 hoặc a=b=c=d=1
a) phương trình
<=> x \(\in\) Z và x \(\le\) \(\frac{4x+1}{9}\) < x +1 (1)
(1) <=> 0 \(\le\) \(\frac{4x+1}{9}-x\) < 1
<=> 0 \(\le\) 4x + 1 - 9x < 9 <=> 0 \(\le\) 1 - 5x < 9 <=> \(-\frac{9}{5}\) < x \(\le\) \(\frac{1}{5}\)
Mà x nguyên nên x = -1; 0