K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

\(\sqrt{3a}.\sqrt{27a}=\sqrt{3a}.3\sqrt{3a}=3\sqrt{9a^2}=3.3.a=9a\) ( vì \(a\ge0\) )

1 tháng 1 2020

triểu khai bt : \(\sqrt{3\cdot a\cdot3\cdot9\cdot a}\)= 9a

31 tháng 3 2017

a) ĐS: ; b) ĐS: 26; c) ĐS: 12a

d) - = - 6a + 9 -

= - 6a + 9 - = - 6a + 9 - 6│a│.

Khi a ≥ 0 thì │a│= a.

Do đó - = - 6a + 9 -6a = - 12a + 9.

Khi a < 0 thì │a│= a.

Do đó - = - 6a + 9 + 6a = + 9.

6 tháng 8 2020

A=\(\frac{u-v}{\sqrt{u}+\sqrt{v}}-\frac{\sqrt{u^3}+\sqrt{v^3}}{u-v}=\frac{\left(\sqrt{u}-\sqrt{v}\right)\left(\sqrt{u}+\sqrt{v}\right)}{\sqrt{u}+\sqrt{v}}-\frac{\left(\sqrt{u}+\sqrt{v}\right)\left(u-\sqrt{u}\sqrt{v}+v\right)}{\left(\sqrt{u}+\sqrt{v}\right)\left(\sqrt{u}-\sqrt{v}\right)}\)

\(=\sqrt{u}-\sqrt{v}-\frac{u-\sqrt{uv}+v}{\sqrt{u}-\sqrt{v}}=\frac{u-2\sqrt{uv}+v-u+\sqrt{uv}-v}{\sqrt{u}-\sqrt{v}}=\frac{-\sqrt{uv}}{\sqrt{u}-\sqrt{v}}\)

15 tháng 6 2017

minh văn nguyễn

8 tháng 11 2021

a) \(=5\left|a\right|+3a=5a+3a=8a\)

b) \(=3\left|a^2\right|+3a^2=3a^2+3a^2=6a^2\)

c) \(=5.2\left|a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)

8 tháng 11 2021

làm chi tiết cho em câu b đi ạ

27 tháng 9 2023

\(A=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\left(x\ge0;x\ne25\right)\)

Để \(A=\dfrac{2\sqrt{x}}{3}\) thì:

\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{2\sqrt{x}}{3}\)

\(\Leftrightarrow3\sqrt{x}-15=2x+10\sqrt{x}\)

\(\Leftrightarrow2x+10\sqrt{x}-3\sqrt{x}+15=0\)

\(\Leftrightarrow2x+7\sqrt{x}+15=0\) 

Mà \(2x+7\sqrt{x}+15>0\) (vì \(x\ge0\))

nên không tìm được giá trị nào của \(x\) thoả mãn \(A=\dfrac{2\sqrt{x}}{3}\)

#\(Toru\)

6 tháng 5 2022

\(N=\dfrac{a+3\sqrt{a}}{\sqrt{a}+3}-\sqrt{a}\)

\(N=\dfrac{\sqrt{a}\sqrt{a}+3\sqrt{a}}{\sqrt{a}+3}-\sqrt{a}\)

\(N=\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)}{\sqrt{a}+3}-\sqrt{a}\)

\(N=\sqrt{a}-\sqrt{a}\)

\(N=0\)

6 tháng 5 2022

\(\dfrac{a+3\sqrt{a}}{\sqrt{a}+3}-\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)}{\sqrt{a}+3}\)

\(=\dfrac{a+3\sqrt{a}-\left(a+3\sqrt{a}\right)}{\sqrt{a}+3}\)

\(=\dfrac{a+3\sqrt{a}-a-3\sqrt{a}}{\sqrt{a}+3}\)

\(=\dfrac{0}{\sqrt{a}+3}\)

\(=0\)

 

a: \(B=\dfrac{2x+3\sqrt{x}+9-x+3\sqrt{x}}{x-9}=\dfrac{x+9}{x-9}\)

b: \P=A:B

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\cdot\dfrac{x-9}{x+9}=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{x+9}>=\dfrac{-1\cdot3}{9}=\dfrac{-1}{3}\)

Dấu = xảy ra khi x=0

27 tháng 9 2023

Có \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=1-\dfrac{10}{\sqrt{x}+5}\)

Dễ thấy \(\dfrac{10}{\sqrt{x}+5}>0\forall x\Rightarrow A=1-\dfrac{10}{\sqrt{x}+5}< 1\)

=> A < 2

29 tháng 8 2021

1. \(\dfrac{1}{2-\sqrt{6}}-\dfrac{1}{2+\sqrt{6}}=\dfrac{2+\sqrt{6}-2+\sqrt{6}}{4-6}=\dfrac{2\sqrt{6}}{-2}=-\sqrt{6}\)

2. \(\sqrt{27a}.\sqrt{3a}=\sqrt{81a^2}=9a\left(a>0\right)\)

1: \(\dfrac{1}{2-\sqrt{6}}-\dfrac{1}{2+\sqrt{6}}\)

\(=\dfrac{2+\sqrt{6}-2+\sqrt{6}}{-2}\)

\(=\dfrac{2\sqrt{6}}{-2}=-\sqrt{6}\)

3: \(\sqrt{27a}\cdot\sqrt{3a}=\sqrt{81a^2}=9a\)