K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho P=\(\frac{\sqrt{a}-2}{1-\sqrt{a}}\)\(-\frac{1+\sqrt{a}}{2+\sqrt{a}}\)\(+\frac{3a-3+\sqrt{9a}}{a+\sqrt{a}-2}\)                                                                                                                       a,rút gọn P                                                                                                                                                                                                            b,tìm giá trị a nguyên để giá trị P...
Đọc tiếp

Cho P=\(\frac{\sqrt{a}-2}{1-\sqrt{a}}\)\(-\frac{1+\sqrt{a}}{2+\sqrt{a}}\)\(+\frac{3a-3+\sqrt{9a}}{a+\sqrt{a}-2}\)                                                                                                                       a,rút gọn P                                                                                                                                                                                                            b,tìm giá trị a nguyên để giá trị P tương ứng là số nguyên                                                                                                            

0
7 tháng 8 2020

\(\text{Đkxđ:}\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

\(A=\frac{\sqrt{a}-2}{1-\sqrt{a}}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{3a-3+\sqrt{9a}}{a+\sqrt{a}-2}\)

\(=\frac{2-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{3a-3+3\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{\left(2-\sqrt{a}\right)\left(\sqrt{a}+2\right)-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)+3a-3+3\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{-\left(a-4\right)-\left(a-1\right)+3a-3+3\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{-a+4-a+1+3a-3+3\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)

25 tháng 10 2015

Ta có \(\left(\sqrt{a}+2\right)\left(1-\sqrt{a}\right)=a+\sqrt{a}-2\)

\(=\frac{3\text{a}+3\sqrt{a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\)

\(=\frac{3\text{a}+3\sqrt{a}-3-a+1+a-4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{3\text{a}+3\sqrt{a}-6}{a+\sqrt{a}-2}\)

\(=\frac{3\left(a+\sqrt{a}-2\right)}{a+\sqrt{a}-2}\)

\(=3\)

b/ Ta có 3 là số nguyên nên biểu thức P luôn nguyên với mọi x

TICK CHO MÌNH NHA

 

22 tháng 6 2016

sao ko có đề bài ( toàn là rút gọn à)

22 tháng 6 2016

câu cuối sai nhé . đúng thì ntn

\(\frac{3a-3+\sqrt{9a}}{a+\sqrt{a-2}}-\frac{\sqrt{a+1}}{\sqrt{a+2}}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\)

18 tháng 10 2015

a) ĐKXĐ:\(x\ge\frac{1}{3};x\ne1\)

b)\(P=\frac{3a+\sqrt{9a-3}-a+4+\sqrt{a}-1-a-\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\frac{a+6+\sqrt{9a-3}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

19 tháng 3 2017

a=4 đó bạn

đây hình như là vòng 16

19 tháng 3 2017

cách làm thế nào vậy bạn? chi tiết nha, cảm ơn nhiều

23 tháng 7 2016

Bài 1

a) \(P=\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\)    (ĐK : x\(\ge0\) ; x\(\ne\) 1)

        \(=\frac{3a+\sqrt{9a}-3}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\)

         \(=\frac{3a+\sqrt{9a}-3-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{3a+\sqrt{9a}-3-a+1-a+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)

b) \(P=\frac{\sqrt{a}+1}{\sqrt{a}-1}=\frac{\sqrt{a}-1+2}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)

Vậy để P là số nguyên thì: \(\sqrt{a}-1\inƯ\left(2\right)\)

Mà Ư(2)={-1;1;2;-1}

=> \(\sqrt{a}-1\in\left\{1;-1;2;-2\right\}\)

Ta có bảng sau:

\(\sqrt{a}-1\)1-12-2
a409\(\sqrt{a}=-1\) (ktm)

vậy a={0;4;9} thì P nguyên

23 tháng 7 2016

Bài 2

  \(P=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)(ĐK:a\(\ge\)8)

      \(=\frac{\sqrt{\left(a-4\right)+4\sqrt{a-4}+4}+\sqrt{\left(a-4\right)-4\sqrt{a-4}+4}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)

     \(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{1-\frac{4}{a}}\)

      \(=\sqrt{a-4}+2+\sqrt{a-4}-2:\frac{a-4}{a}\)

     \(=2\sqrt{a-4}\cdot\frac{a}{a-4}\)

     \(=\frac{2a}{\sqrt{a-4}}\)

30 tháng 8 2019

Đk : \(a\ge0,a\ne1\)

a,Rút gọn được P= \(\frac{\sqrt{a}+1}{\sqrt{a}-1}\)

b, Có P<1 <=> \(\frac{\sqrt{a}+1}{\sqrt{a}-1}< 1\) <=> \(\frac{\sqrt{a}+1}{\sqrt{a}-1}-1< 0\)

<=> \(\frac{\sqrt{a}+1-\sqrt{a}+1}{\sqrt{a}-1}< 0\) <=> \(\frac{2}{\sqrt{a}-1}< 0\) => \(\sqrt{a}-1< 0\)

<=> \(\sqrt{a}< 1\) <=> a<1 ,k/hợp với đk của a

=> \(0\le a< 1\)

Vậy để P<1 <=> 0\(\le\)a<1

c,Có P= \(\frac{\sqrt{a}+1}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)

Để \(P\in Z\) <=> \(\frac{2}{\sqrt{a}-1}\in Z\)

Với mọi a t/m đk có:\(\left[{}\begin{matrix}\sqrt{a}\in N\\\sqrt{a}\notin N\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}\sqrt{a}-1\in Z\\\sqrt{a}-1\notin Z\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}\frac{2}{\sqrt{a}-1}\in Z\left(tm\right)\\\frac{2}{\sqrt{a}-1}\notin Z\left(ktm\right)\end{matrix}\right.\)

=> \(\sqrt{a}-1\in\) Ư(2)\(=\left\{1,-1,2,-2\right\}\)

<=> \(\sqrt{a}\in\left\{2,0,3,-1\right\}\)

\(\sqrt{a}\ge0\) => \(\sqrt{a}\in\left\{2,0,3\right\}\) <=> \(a\in\left\{4,0,9\right\}\)

Tại a=0 => P=-1

Tại a=4=>P=3

Tại a=9 => P=2

Vậy a=4 thì P đạt GT nguyên lớn nhất