cho x>0 tìm giá trị nhỏ nhất của biểu thức
\(M=4^2-3x+\frac{1}{4x}+2017\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\)như trên
\(=>M=4x^2-4x+1+x+\frac{1}{4x}+2010\)
\(=>M=\left(4x^2-4x+1\right)+\left(x+\frac{1}{4x}\right)+2010\)
\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\)
Áp dụng BĐT Cô- si cho 2 số không âm, ta có:
\(x+\frac{1}{4x}\ge2\sqrt{x.\frac{1}{4x}}=2\sqrt{\frac{1}{4}}=1\)
\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\ge0+1+2010=2011\\ \)
=>minM=2011 khi x=\(\frac{1}{2}\)
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(4x^4+1\geq 4x^2\)
\(x^2+\frac{1}{4x^2}\geq 1\)
Cộng 2 BĐT trên theo vế và thu gọn ta có:
\(4x^4-3x^2+\frac{1}{4x^2}\geq 0\)
\(\Rightarrow P=4x^4-3x^2+\frac{1}{4x^2}+2017\geq 2017\)
Vậy $P_{\min}=2017$. Giá trị này đạt được khi $x=\pm \frac{1}{\sqrt{2}}$
Để M nhỏ nhất
=> (x-1)^2 = 0 ( do (x-1)^2 lớn hơn or = 0)
=> x = 1
Lại => |y+3x| = 0 ( giá trị tuyệt đối cx luôn lớn hơn or = 0)
|y+3.1| = 0
=> y = - 3
=> Min M = 2017 tại x = 1; y = -3
M xác định
\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\x^2-x\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\left(x-1\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne0;x\ne1\end{cases}}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)
Vậy ĐKXĐ của M là \(\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)
\(M=\frac{3}{x-1}+\frac{1}{x^2-x}=\frac{3}{x-1}+\frac{1}{x\left(x-1\right)}=\frac{3x}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}=\frac{3x+1}{x\left(x-1\right)}\)
Thay x=5 ta có:
\(M=\frac{3.5+1}{5\left(5-1\right)}=\frac{15+1}{5.4}=\frac{16}{20}=\frac{4}{5}\)
Vậy \(M=5\)tại x=5
\(M=0\)
\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=0\Leftrightarrow3x+1=0\Leftrightarrow x=-\frac{1}{3}\)( thỏa mãn đkxđ)
Vậy với \(x=-\frac{1}{3}\)thì \(M=0\)
\(M=-1\)
\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=-1\Leftrightarrow3x+1=-x^2+x\Leftrightarrow x^2+2x+1=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Vậy với \(x=-1\)thì \(M=-1\)
Lâu rồi không show cách này:)
Sửa đề: \(M=4x^2-3x+\frac{1}{4x}+2017\)
Ta có: \(M=\frac{\left(4x+1\right)\left(2x-1\right)^2}{4x}+2017\ge2017\)
Đẳng thức xảy ra khi \(x=\frac{1}{2}\)
Em kiểm tra lại đề nhé! Hàm số của biểu thức : \(M=4^2-3x+\frac{1}{4x}+2017\) có đồ thị đi xuống nên sẽ không tồn tại GTNN em nhé!