Cho tam giác ABC,trên cạnh BC lấy điểm M sao cho MC =1/4MB.Biết Samc=12,25cm2.Tính Sabc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(S_{ABM}=2S_{AMC}\)(chung đường cao hạ từ \(A\), \(BM=2CM\))
b) \(S_{ABM}=2S_{AMC}\Leftrightarrow S_{ABM}+S_{AMC}=3S_{AMC}\Leftrightarrow S_{ABC}=3S_{AMC}\Leftrightarrow S_{AMC}=\frac{S_{ABC}}{3}=3\left(cm^2\right)\)
\(S_{ABM}=2S_{AMC}=6\left(cm^2\right)\)
A B C M P N 7cm^2
Giải: Do BP = PM
Mà BP + PM = BM
=> BP = PM = 1/2BM
Ta có: St/giác BNP = 1/2x (BN x BP)
hay 1/2 x (1/2BM x 1/3BC) = 7
=> 1/2 x 1/6 BM x BC = 7
=> 1/2 x BM x BC = 7 : 1/6
=> 1/2 x BM x BC = 42
=> St/giác BMC = 42 cm2
Do AM = MC và AM + MC = AC
=> AM = MC = 1/2AC
Xét t/giác ABC và t/giác MBC
có MC = 1/2AC
BC : chung
=> St/giác MBC = 1/2St/giác ABC
=> 42 cm2 = 1/2St/giác ABC
=> St/giác ABC = 42 : 1/2 = 84 (cm2)
mong các bạn làm bạn với mình vì mình không có nhiều bạn
^-^ cảm ơn các bạn rất nhiều ^-^
\(a,\) Kẻ đường cao AH
Suy ra AH là đường cao cũng là trung tuyến
Do đó \(BH=HC=\dfrac{1}{2}BC=\dfrac{a}{2}\)
Áp dụng PTG: \(AH=\sqrt{AB^2-BH^2}=\sqrt{a^2-\dfrac{a^2}{4}}=\dfrac{a\sqrt{3}}{2}\)
Vậy \(S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot\dfrac{a\sqrt{3}}{2}\cdot a=\dfrac{a^2\sqrt{3}}{4}\left(đvdt\right)\)
giúp mình nhé
Hình ( tự vẽ )
giải
Kẻ AH \(\perp\)BC
SABM = \(\frac{1}{2}\).AH.BM
SAMC = \(\frac{1}{2}\).AH.MC
=> SABC = SABM + SAMC
= \(\frac{1}{2}AH.BM+\frac{1}{2}AH.MC\)
=\(\frac{1}{2}.AH.4MC+\frac{1}{2}.AH.MC\)( \(MC=\frac{1}{4}MB\))
= \(\frac{1}{2}AH.MC\left(4+1\right)\)
= \(12,25.5\)
= \(61,25\)
Vậy SABC = 61,25 cm2