K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2019

đặt A=1+4+4^2+4^3+...+4^2018

    B=1+2+2^2+2^3+...+2^2018

A=1+4+4^2+4^3+...+4^2018

4A=4+4^2+4^3+...+4^2019

4A-A=(4+4^2+4^3+...+4^2019)-(1+4+4^2+4^3+...+4^2018)

3A=4^2019-1

A=(4^2019)/3

B=1+2+2^2+2^3+...+2^2018

2B=2+2^2+2^3+...+2^2019

2B-B=(2+2^2+2^3+...+2^2019)-(1+2+2^2+2^3+...+2^2018)

B=2^2019-1

=>(1+4+4^2+4^3+...+4^2018)/(1+2+2^2+2^3+...+2^2018) =A/B=(4^2019-1)/3/(2^2019-1)

=(4^2019-1)/(3.2^2019-3)

Vậy ...............................

30 tháng 1 2019

\(A=1+2^1+2^2+...+2^{2017}\)

\(2A=2+2^2+2^3+...+2^{2018}\)

\(2A-A=2^{2018}-1hayA=2^{2018}-1\)

2; 3 tuong tu

30 tháng 1 2019

1) A = 1 + 2 + 22 + 23 + .... + 22018

2A = 2 + 22 + 23 + 24 + ..... + 22019

2A - A = ( 2 + 22 + 23 + 24 + ..... + 22019 ) - ( 1 + 2 + 22 + 23 + .... + 22018 )

Vậy A = 22019 - 1

2) B = 1 + 3 + 32 + 33 + ..... + 32018

3A = 3 + 32 + 33 + ...... + 32019

3A - A = ( 3 + 32 + 33 + ...... + 32019 ) - ( 1 + 3 + 32 + 33 + ..... + 32018 )

2A = 32019 - 1

Vậy A = ( 32019 - 1 ) : 2

3) C = 1 + 4 + 42 + 43 + ...... + 42018

4A = 4 + 42 + 43 + ...... + 42019

4A - A = ( 4 + 42 + 43 + ...... + 42019 ) - ( 1 + 4 + 42 + 43 + ...... + 42018 )

3A = 42019 - 1

Vậy A = ( 42019 - 1 ) : 3

8 tháng 7 2018

A = 1 + 2 + 3 + ... + 2018

= ( 1 + 2018 ) + ( 2 + 2017) + ... + ( 1009 + 1010 )

= 2019 + 2019 + ... + 2019 ( có 1009 số 2019 )

= 2019 x 1009 = 2037171

B = 1 + 3 + 5 + ... + 2017

= ( 1 + 2017 ) + ( 3 + 2015 ) + ... + ( 1007 + 1010) + 1009 

= 2018 + 2018 + ... + 2018 + 1009 (có 504 số 2018)

= 2018 x 504 + 1009 = 1018081

Còn lại làm giống ý trên . 

6 tháng 6 2019

\(A=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)

\(A=1+\left(1+\frac{2017}{2}\right)+\left(1+\frac{2016}{3}\right)+...+\left(1+\frac{1}{2018}\right)\)

\(A=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)

\(A=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)

Ta có: \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)

11 tháng 1 2019

Theo bài ra, ta có: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2017.2018.2019}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2017.2018.2019}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2017.2018}-\frac{1}{2018.2019}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2018.2019}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2018.2019}\right)\)

11 tháng 1 2019

Giải thích:

\(\frac{2}{1.2.3}=\frac{3}{1.2.3}-\frac{1}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)

\(\frac{2}{2.3.4}=\frac{4}{2.3.4}-\frac{2}{2.3.4}=\frac{1}{1.2}-\frac{1}{3.4}\)

................................................................................

\(\frac{2}{2017.2018.2019}=\frac{2019}{2017.2018.2019}-\frac{2017}{2017.2018.2019}=\frac{1}{2017.2018}-\frac{1}{2018.2019}\)

12 tháng 3 2018

hình như cái này đâu phải toán lớp 5 đâu bạn

12 tháng 3 2018

nhầm toán lớp 6