Biết x>y>0 và 3x2+3y2=10xy tính P= y-x phần y+x.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{y-x}{x+y}\)
\(\Rightarrow P^2=\frac{3\left(y-x\right)^2}{3\left(x+y\right)^2}\)
\(P^2=\frac{3\left(y^2-2xy+x^2\right)}{3\left(x^2+2xy+y^2\right)}\)
\(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\)
Thay \(3x^2+3y^2=10xy\)vào \(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\) ta được :
\(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\)
\(P^2=\frac{10xy-6xy}{10xy+6xy}\)
\(P^2=\frac{4xy}{16xy}\)
\(P^2=\frac{1}{4}\)
\(\Leftrightarrow P=\frac{1}{2}\)
Vậy \(P=\frac{y-x}{x+y}=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x>y>0\\3x^2+3y^2=10xy\end{cases}}\)
a: \(x^2+3y^2-4x+6y+7=0\)
\(\Leftrightarrow x^2-4x+4+3y^2+6y+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x,y\right)=\left(-2;1\right)\)
a) \(P=3\left(x^2+2xy+y^2\right)-2\left(x+y\right)-100\)
\(P=3\left(x+y\right)^2-2.5-100\)
\(P=3.5^2-110\)
\(P=-35\)
b) \(Q=\left[x^3+y^3+3xy\left(x+y\right)\right]-2\left(x^2+2xy+y^2\right)+3.5+10\)
\(Q=\left(x+y\right)^3-2\left(x+y\right)^2+25\)
\(Q=5^3-2.5^2+25\)
\(Q=100\)
3x^2+3y^2+4xy-2x+2y+2=0
=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0
=>x=1 và y=-1
M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1
a) 10x(x-y) - 6y(y-x)
= 10x(x-y) +6y ( x-y)
=(10x+6y) (x-y)
b) 3x2 + 5y - 3xy -5x
= 3x(x-y) + 5(y-x)
= 3x(x-y) -5(x-y)
= (3x-5) ( x-y)
c) 3y2 - 3z2 +3x2 + 6xy
=3(y2 - z2 + x2 + 2xy)
=3[(x2 +2xy+y2)-z2 ]
=3[(x+y)2 - z2 ]
=3(x+y-z) (x+y+z)
d) 16x3 + 54y3
=2(8x3 + 27y3 )
=2[(2x)3 + (3y)3 ]
=2(2x+3y) (4x2 - 6xy + 9y2 )
e) x2 - 25 -2xy+y2
=(x2-2xy+y2)-25
=(x-y)2 -52
=(x-y-5) (x-y+5)
f) (mình chưa làm ra )
{mong m.n bổ sung thêm..}
mấy câu trên bạn kia đã trả lời rồi nên mk k làm lại nx
f, x5 - 3x4 + 3x3 - x2
= x2 (x3 - 3x2 + 3x -1)
= x2 (x - 1)3
Chúc bạn học tốt!
3 x 2 + 6 x y 2 - 3 y 2 + 6 x 2 y = 3 x 2 - 3 y 2 + 6 x y 2 + 6 x 2 y = 3 x 2 - y 2 + 6 x y x + y = 3 x - y x + y + 6 x y x + y = 3 x - y + 6 x y x + y = 3 x - y + 2 x y x + y
Vậy chỗ trống là x - y + 2 x y
Đáp án cần chọn là: B
\(P=\frac{y-x}{x+y}\)
\(\Rightarrow P^2=\frac{3\left(y-x\right)^2}{3\left(x+y\right)^2}\)
\(P^2=\frac{3\left(y^2-2xy+x^2\right)}{3\left(x^2+2xy+y^2\right)}\)
\(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\)
Thay \(3x^2+3y^2=10xy\) vào \(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\) , ta được :
\(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\)
\(P^2=\frac{10xy-6xy}{10xy+6xy}\)
\(P^2=\frac{4xy}{16xy}\)
\(P^2=\frac{1}{4}\)
\(\Leftrightarrow P=\frac{1}{2}\)
Vậy \(P=\frac{y-x}{x+y}=\frac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}x>y>0\\3x^2+3y^2=10xy\end{matrix}\right.\)