K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2019

Ta có : \(A=\frac{11^{2007}+1}{11^{2008}+1}=\frac{11\left[11^{2007}+1\right]}{11^{2008}+1}=\frac{11^{2008}+11}{11^{2008}+1}=\frac{11^{2008}+1+10}{11^{2008}+1}=1+\frac{10}{11^{2008}+1}\)

\(B=\frac{11^{2008}+1}{11^{2009}+1}=\frac{11\left[11^{2008}+1\right]}{11^{2009}+1}=\frac{11^{2009}+11}{11^{2009}+1}=\frac{11^{2009}+1+10}{11^{2009}+1}=1+\frac{10}{11^{2009}+1}\)

Đến đây bạn tự so sánh nhé

29 tháng 12 2019

Ta có: B = 11^2008+1/11^2009+1 < 11^20087 +1 + 10/11^2009+1+10 = 11^2008+11/11^2009+11 = 11(11^2007 +1)/11(11^2008+1) = 11^2007 +1/11^2008+1 = A

=>B <A

Vậy A > B

1 tháng 1 2017

Sửa lại:

Ta có: \(A=\frac{11^{2007}+1}{11^{2008}+1}\Rightarrow11A=\frac{11^{2008}+11}{11^{2008}+1}=1+\frac{10}{11^{2008}+1}\)

\(B=\frac{11^{2008}+1}{11^{2009}+1}\Rightarrow11B=\frac{11^{2009}+11}{11^{2009}+1}=1+\frac{10}{11^{2009}+1}\)

\(\frac{10}{2^{2008}+1}>\frac{10}{11^{2009}+1}\Rightarrow1+\frac{10}{2^{2008}+1}>1+\frac{10}{11^{2009}+1}\)

\(\Rightarrow11A>11B\)

\(\Rightarrow A>B\)

1 tháng 1 2017

Ta có: \(A=\frac{11^{2007}+1}{11^{2008}+1}\)

\(\Rightarrow11A=\frac{11^{2008}+11}{11^{2008}+1}=1+\frac{10}{11^{2008}+1}\)

\(B=\frac{11^{2008}+1}{11^{2009}+1}\)

\(\Rightarrow11B=\frac{11^{2009}+11}{11^{2009}+1}=1+\frac{10}{11^{2009}+1}\)

\(\frac{10}{11^{2008}+1}< \frac{10}{11^{2009}+1}\Rightarrow1+\frac{10}{11^{2008}+1}< 1+\frac{10}{11^{2009}+1}\)

\(\Rightarrow11A< 11B\)

\(\Rightarrow A< B\)

Vậy \(A< B\)

17 tháng 4 2019

DỄ VÃI CHƯỞNG

15 tháng 5 2020

Dễ mà ko làm được thì nghỉ học đi 

16 tháng 9 2019

giúp mình với khocroi

13 tháng 9 2015

mong mấy bạn giúp mình mai mình nộp rôì ko đùa đâu

1 tháng 11 2016

ai lam guip toi cau nay voi mai toi nop bai roi

so sanh 2 phan so sau bang cach nahnh nhat: 2007/2008 voi 2008/2009

1 tháng 7 2015

a) \(A=1-\frac{1}{2008.2009}\) ; \(B=1-\frac{1}{2009.2010}\)

Vì \(\frac{1}{2008.2009}>\frac{1}{2009.2010}\) nên A < B

1 tháng 7 2015

Olm chọn đi để em còn làm tiếp câu b)