Giúp mình bài này vs ak!!
\(\frac{1}{(x+1)^2(x+2)}=\frac{a}{x+1}+\frac{b}{(x+1)^2}+\frac{c}{x+2}\)
Mình hứa sẽ tick cho bạn nào trl đúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em kiểm tra lại đề bài nhé \(\frac{2}{x-y}\)hay \(\frac{2}{x-2}\)
\(=\frac{3x^2+9x-3}{x^2+x-2}-\frac{x+1}{x+2}-\frac{x-2}{x-1}\)
\(=\frac{3x^2+9x-3}{\left(x+2\right)\left(x-1\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}-\frac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
\(=\frac{3x^2+9x-3-\left(x^2-1\right)-\left(x^2-4\right)}{\left(x-1\right)\left(x+2\right)}\)
\(=\frac{3x^2+9x-3-x^2+1-x^2+4}{\left(x-1\right)\left(x+2\right)}\)
\(=\frac{x^2+9x+2}{\left(x-1\right)\left(x+2\right)}\)
mk ko biết làm
xin lỗi bn nhae
xin lỗi vì đã ko giúp được bn
chcus bn học gioi!
nhae@@@
Bài 1:
\(A=\left(\frac{-5}{11}+\frac{7}{22}-\frac{4}{33}-\frac{5}{44}\right):\left(38\frac{1}{122}-39\frac{7}{22}\right)\)
\(=\frac{-49}{132}:\left(-\frac{879}{671}\right)=\frac{2989}{105408}\)
Bài 2:
\(\frac{4}{5}-\left(\frac{-1}{8}\right)=\frac{7}{8}-x\)
<=> \(\frac{7}{8}-x=\frac{27}{40}\)
<=> \(x=\frac{7}{8}-\frac{27}{40}=\frac{1}{5}\)
Vậy...
\(=\frac{x-1}{2\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{x-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1-\sqrt{x}-1\right)\left(\sqrt{x}-1+\sqrt{x}+1\right)}{2\sqrt{x}}\)
\(=\frac{-2.2\sqrt{x}}{2}\)
\(=-2\sqrt{x}\)
Thank bạn bài vừa rồi đã k cho mk^^
\(\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{a}{x+1}+\frac{b}{\left(x+1\right)^2}+\frac{c}{x+2}\)
\(=\frac{a}{x+1}+\frac{b}{x+1^2}+\frac{c}{x+2}\)
\(=\frac{1}{\left(x+1\right)^2\left(x+2\right)=}=\frac{a}{\left(x+1\right)\left(x+2\right)}+\frac{b}{x+2}+\frac{c}{\left(x+1\right)^2\left(x+2\right)}\)
\(\frac{c}{\left(x+1\right)^2}+\frac{a}{\left(x+1\right)\left(x+2\right)}+\frac{b}{\left(x+2\right)}=1\)
\(=\frac{c}{x^2+2c+x+1}+\frac{a}{x^2+3a\left(x+2a\right)}+\frac{b}{x+2b}=1\)
\(=\frac{\left(c+a\right)}{x^2+\left(2+x+1+\frac{a}{x^2+3ax+2a}+\frac{b}{x+2b}\right)=1}\)
\(=\frac{c+a}{x^2+\left(2c+3a+b\right)}x+2a+2b=0\)
\(\frac{c+a=0}{2c+3b=0}2a+2b=0\)
\(c=b=-a\)
Vậy:.....