x^2.(3x-1)-2.(1-3x)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)hay x=1
Vậy: S={1}
c) Ta có: \(x+x^4=0\)
\(\Leftrightarrow x\left(x^3+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)=0\)
mà \(x^2-x+1>0\forall x\)
nên x(x+1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy: S={0;-1}
a) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy: S={-5;2}
b) Ta có: \(3x^2-7x+1=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=\dfrac{37}{36}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{7}{6}=\dfrac{\sqrt{37}}{6}\\x-\dfrac{7}{6}=-\dfrac{\sqrt{37}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{37}+7}{6}\\x=\dfrac{-\sqrt{37}+7}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{\sqrt{37}+7}{6};\dfrac{-\sqrt{37}+7}{6}\right\}\)
c) Ta có: \(3x^2-7x+8=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{8}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{8}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{47}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=-\dfrac{47}{36}\)(vô lý)
Vậy: \(x\in\varnothing\)
a)
\(\Rightarrow x\left(x-5\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-5=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b)
\(\Rightarrow3x\left(x-2\right)-2\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(3x-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-2=0\\3x-2=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{2}{3}\end{array}\right.\)
c)
\(\Rightarrow\left(3x-1\right)\left(5x+x-2\right)=0\)
\(\Rightarrow\left(3x-2\right)^2.2=0\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow x=\frac{2}{3}\)
(3x+4)\(^2\) - (3x-1)(3x+1)=49
=>\(9\text{x}^2+24x+16-9\text{x}^2+1\)\(=49\)
=>\(24\text{x}+17=49\)
=> 24x = 32
=> x = \(\dfrac{4}{3}\)
b) \(\left(3\text{x}-1\right)^2-\left(3\text{x}-2\right)^2=0 \)
\(=>9\text{x}^2-6\text{x}+1-9\text{x}^2+12\text{x}-4=0\)
\(=>6\text{x}-3=0\)
=> 6x = 3
=> x = \(\dfrac{1}{2}\)
c) \(\left(2\text{x}+1\right)^2-\left(x-1\right)^2=0\)
\(=>4\text{x}^2+4\text{x}+1-x^2+2\text{x}-1=0\)
=> \(3\text{x}^2+6\text{x}=0\)
=> \(3\text{x}\left(x+2\right)=0\)
=> 3x=0 hoặc x+2 = 0
+) 3x = 0 => x =0
+) x+2 = 0 => x = -2
a)\(3x\left(x-2\right)+2\left(2-x\right)=0\)
\(\Leftrightarrow3x\left(x-2\right)-2\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\x-2=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)
b)\(5x\left(3x-1\right)+x\left(3x-1\right)-2\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(5x+x-2\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(6x-2\right)=0\)
\(\Leftrightarrow2\left(3x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)^2=0\Rightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)
a/3x(x-2)+2(2-x)=0
=>(2-3x)(2-x)=0
=>\(\orbr{\begin{cases}2-3x=0\\2-x=0\end{cases}}\)=>\(\orbr{\begin{cases}3x=2\\x=2\end{cases}}\)=>\(\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)
b/5x(3x-1)+x(3x-1)-2(3x-1)=0
=>(5x+x-2)(3x-1)=0
=>(6x-2)(3x-1)=0
=>\(\orbr{\begin{cases}6x-2=0\\3x-1=0\end{cases}}\)=>\(\orbr{\begin{cases}6x=2\\3x=1\end{cases}}\)=>x=\(\frac{1}{3}\)
- Thay lần lượt xo vào từng phương trình trên ta được kết quả sau :
+, Phương trình nhận xo là nghiệm : a, b, c, d, e .
\(\left(4-3x\right)\left(10x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)
\(\left(7-2x\right)\left(4+8x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)
rồi thực hiện đến hết ...
Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>
\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(2x^2-7x+3=4x^2+4x-3\)
\(2x^2-7x+3-4x^2-4x+3=0\)
\(-2x^2-11x+6=0\)
\(2x^2+11x-6=0\)
\(2x^2+12x-x-6=0\)
\(2x\left(x+6\right)-\left(x+6\right)=0\)
\(\left(x+6\right)\left(2x-1\right)=0\)
\(x+6=0\Leftrightarrow x=-6\)
\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
\(3x-2x^2=0\)
\(x\left(2x-3\right)=0\)
\(x=0\)
\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp nha
c(x-1)^2=4
x^2-2x+1=4
x^2-2x+1-4=0
x^2-2x-3=0
x^2-3x+x-3=0
x(x-3)+(x-3)=0
(x-3)(x+1)=0
\(\Rightarrow\hept{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)
d, x^3+2x^2-x-2=0
x^2(x+2)-(x+2)=0
(x+2)(x^2-1)=0
\(\Rightarrow\hept{\begin{cases}x=-2\\x=+-1\end{cases}}\)
Ta có:
x2 - (3x - 1) - 2(1 - 3x) = 0
=> x2 - 3x + 1 - 2 + 6x = 0
=> x2 + 3x - 1 = 0
=> (x2 + 3x + 9/4) = 13/4
=> (x + 3/2)2 = 13/4
=> \(\orbr{\begin{cases}x+\frac{3}{2}=\sqrt{\frac{13}{4}}\\x+\frac{3}{2}=-\sqrt{\frac{13}{4}}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{-3+\sqrt{13}}{4}\\x=\frac{3+\sqrt{13}}{4}\end{cases}}\)
\(x^2\left(3x-1\right)-2\left(1-3x\right)=0\)
\(\Leftrightarrow x^2\left(3x-1\right)+2\left(3x-1\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(3x-1\right)=0\)
Vì \(x^2+2>0\)\(\Rightarrow\)Để \(\left(x^2+2\right)\left(3x-1\right)=0\)thì \(3x-1=0\)\(\Leftrightarrow x=\frac{1}{3}\)
Vậy \(x=\frac{1}{3}\)