K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2018

\(\text{Vì a,b,c là 3 số tự nhiên khác 0 và 64a = 80b = 96c }\)

\(\text{Do đó , a,b,c }\in BC(64,80,96)\)

Ta có :

64 = 26

80 = 24 . 5

96 = 25 . 3

=> BCNN\((64,80,96)=2^6\cdot5\cdot3=960\)

\(\Rightarrow\hept{\begin{cases}a=960\div64\\b=960\div80\\c=960\div96\end{cases}}\Rightarrow\hept{\begin{cases}a=15\\b=12\\c=10\end{cases}}\)

Vậy 3 số tự nhiên a,b,c nhỏ nhất khác 0 lần lượt 15,12,10

\(\text{Gọi d}\inƯC(7n+10,5n+7)\)

\(\text{Ta có :}\hept{\begin{cases}7n+10=5(7n+10)\\5n+7=7(5n+7)\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)

\((35n+50)-(35n+49)⋮d\)

\(1⋮d\Rightarrow d=1\)

Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau