Cho hình vuông ABCD. Các điểm E,F thỏa mãn: \(2\overrightarrow{EB}+\overrightarrow{EC}=\overrightarrow{0}\)và \(2\overrightarrow{CF}+\overrightarrow{CD}=\overrightarrow{0}\)
Gọi I là giao của BF và AE Chứng minh rằng : tam giác AIC vuông.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(AC = AB\sqrt 2 = a\sqrt 2 \)
+) \(\overrightarrow {KA} + \overrightarrow {KC} = \overrightarrow 0 \),
Suy ra K là trung điểm AC \( \Rightarrow AK = \frac{1}{2}.a\sqrt 2 = \frac{{a\sqrt 2 }}{2}\)
+) \(\overrightarrow {HA} + \overrightarrow {HD} + \overrightarrow {HC} = \overrightarrow 0 \), suy ra H là trọng tâm của tam giác ADC
\(\Rightarrow DH = \frac{2}{3}DK = \frac{1}{3}DB\) (1)
+) \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \), suy ra G là trọng tâm của tam giác ABC
\(\Rightarrow BG = \frac{2}{3}BK = \frac{1}{3}BD\) (2)
\((1,2) \Rightarrow HG = \frac{1}{3}BD=\frac{{a\sqrt 2 }}{3}\)
Mà \(KG = KH = \frac{1}{2}HG= \frac{{a\sqrt 2 }}{6}\) (2)
\(\Rightarrow AG = \sqrt {A{K^2} + G{K^2}} = \sqrt {{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 2 }}{6}} \right)}^2}} = \frac{{a\sqrt 5 }}{3}\)
\( \Rightarrow \left| {\overrightarrow {AG} } \right| = \frac{{a\sqrt 5 }}{3}\)
Vậy \(\left|\overrightarrow {KA}\right| =\frac{{a\sqrt 2 }}{2} ,\left|\overrightarrow {GH}\right|=\frac{{a\sqrt 2 }}{3} ,\left|\overrightarrow {AG}\right|=\frac{{a\sqrt 5 }}{3} \).
Ta có:
\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \left( {\overrightarrow {GI} + \overrightarrow {IA} } \right) + \left( {\overrightarrow {GI} + \overrightarrow {IB} } \right) + \left( {\overrightarrow {GJ} + \overrightarrow {JC} } \right) + \left( {\overrightarrow {GJ} + \overrightarrow {JD} } \right) = \overrightarrow 0 \)
\( \Leftrightarrow 2\overrightarrow {GI} + \left( {\overrightarrow {IA} + \overrightarrow {IB} } \right) + 2\overrightarrow {GJ} + \left( {\overrightarrow {JC} + \overrightarrow {JD} } \right) = \overrightarrow 0 \)
\( \Leftrightarrow 2\overrightarrow {GI} + 2\overrightarrow {GJ} = \overrightarrow 0 \Leftrightarrow 2\left( {\overrightarrow {GI} + \overrightarrow {GJ} } \right) = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {GI} + \overrightarrow {GJ} = \overrightarrow 0 \Rightarrow \)G là trung điểm của đoạn thẳng IJ
Vậy I, G, J thẳng hàng
Lời giải:
Dễ thấy \(\triangle AEO=\triangle CFO(g.c.g)\)
suy ra \(\frac{AO}{OC}=\frac{EO}{OF}=1\Rightarrow \) $O$ là trung điểm của $EF$
Do đó \(\overrightarrow{OE}+\overrightarrow{OF}=\overrightarrow{0}\)
Ta có \(AE\parallel CF\) và chiều vector ngược nhau, suy ra \(\overrightarrow{AE}\uparrow\downarrow \overrightarrow {CF}\)
Từ hai tam giác bằng nhau trên cũng suy ra \(AE=CF\)
Do đó \(\overrightarrow{AE}+\overrightarrow{CF}=\overrightarrow{0}\) Vì \(AE=CF,AB=CD\Rightarrow EB=DF\). Từ đó dễ thấy \(BEDF\) là hình bình hành Ta có \(\overrightarrow{DE};\overrightarrow{BF}\) là hai vector ngược hướng và có độ dài bằng nhau nên \(\overrightarrow{DE}+\overrightarrow{BF}=\overrightarrow{0}\)Lời giải:
\(\overrightarrow{JA}+2\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{JA}+2(\overrightarrow{JA}+\overrightarrow{AB})+3(\overrightarrow{JA}+\overrightarrow{AC})=\overrightarrow{0}\)
\(\Leftrightarrow 6\overrightarrow{JA}+2\overrightarrow{AB}+3\overrightarrow{AC}=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{AJ}=\frac{2\overrightarrow{AB}+3\overrightarrow{AC}}{6}=\frac{1}{3}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}\)
a) Ta có: \(\overrightarrow {EA} + \overrightarrow {EB} + \overrightarrow {EC} + \overrightarrow {ED} \)\( = 4\overrightarrow {EG} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} \)
Mà: \(\overrightarrow {GA} + \overrightarrow {GB} = 2\overrightarrow {GM} ;\) (do M là trung điểm của AB)
\(\overrightarrow {GC} + \overrightarrow {GD} = 2\overrightarrow {GN} \) (do N là trung điểm của CD)
\( \Rightarrow \overrightarrow {EA} + \overrightarrow {EB} + \overrightarrow {EC} + \overrightarrow {ED} = 4\overrightarrow {EG} + 2(\overrightarrow {GM} + \overrightarrow {GN} ) = 4\overrightarrow {EG} \) (do G là trung điểm của MN)
b) Vì E là trọng tâm tam giác BCD nên \(\overrightarrow {EB} + \overrightarrow {EC} + \overrightarrow {ED} = \overrightarrow 0 \)
Từ ý a ta suy ra \(\overrightarrow {EA} = 4\overrightarrow {EG} \)
c) Ta có: \(\overrightarrow {EA} = 4\overrightarrow {EG} \Leftrightarrow \overrightarrow {EA} = 4.(\overrightarrow {EA} + \overrightarrow {AG} ) \Leftrightarrow - 3\overrightarrow {EA} = 4\overrightarrow {AG} \)
\( \Leftrightarrow 3\overrightarrow {AE} = 4\overrightarrow {AG} \) hay \(\overrightarrow {AG} = \frac{3}{4}\overrightarrow {AE} \)
Suy ra A, G, E thẳng hàng và \(AG = \frac{3}{4}AE \) nên G thuộc đoạn AE.