K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2021

CHO NỬA ĐƯỜNG TRÒN (O;R) ĐƯỜNG KÍNH AB. TỪ A VÀ B KẺ HAI TIẾP TUYẾN AX VÀ BY VỚI NỬA ĐƯỜNG TRÒN . QUA ĐIỂM M BẤT KÌ THUỘC NỬA ĐƯỜNG TRÒN KẺ TIẾP TUYẾN THỨ BA CẮT AX ,BY LẦN LƯỢT TẠI E VÀ F . NỐI AM CẮT OE TẠI P, NỐI BM CẮT OF TẠI Q. HẠ MH VUÔNG GÓC VỚI AB TẠI HA, CHỨNG MINH…

 

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét ΔADB vuông tại A có AC là đường cao

nên \(AD^2=DB\cdot DC\)

b: Xét (O) có

EC là tiếp tuyến

EA là tiếp tuyến

Do đó: EC=EA
=>ΔECA cân tại C

=>góc ECA=góc EAC

\(\Leftrightarrow90^0-\widehat{ECA}=90^0-\widehat{EAC}\)

hay \(\widehat{EDC}=\widehat{ECD}\)

=>ΔECD cân tại E

=>ED=EC
mà EC=EA
nên EA=ED

hay E là trung điểm của AD

27 tháng 1 2022

có hình không bạn

4 tháng 7 2021

1) Vì EM,EA là tiếp tuyến \(\Rightarrow OE\) là phân giác \(\angle MOA\)

\(\Rightarrow\angle MOE=\dfrac{1}{2}\angle MOA\)

Vì FM,FB là tiếp tuyến \(\Rightarrow OF\) là phân giác \(\angle MOB\)

\(\Rightarrow\angle MOF=\dfrac{1}{2}\angle MOB\)

\(\Rightarrow\angle MOE+\angle MOF=\dfrac{1}{2}\left(\angle MOA+\angle MOB\right)=\dfrac{1}{2}.180=90\)

\(\Rightarrow\angle EOF=90\)

2) Ta có: \(\angle EAO+\angle EMO=90+90=180\Rightarrow AEMO\) nội tiếp

\(\Rightarrow\angle MEO=\angle MAO\)

Vì AB là đường kính \(\Rightarrow\angle AMB=90\)

Xét \(\Delta MAB\) và \(\Delta OEF:\) Ta có: \(\left\{{}\begin{matrix}\angle AMB=\angle EOF\\\angle FEO=\angle MAB\end{matrix}\right.\)

\(\Rightarrow\Delta MAB\sim\Delta OEF\left(g-g\right)\)

Vì \(AE\parallel BF(\bot AB)\) \(\Rightarrow\dfrac{BF}{AE}=\dfrac{FK}{AK}\left(1\right)\)

Vì EM,EA là tiếp tuyến \(\Rightarrow EA=EM\left(2\right)\)

Vì FM,FB là tiếp tuyến \(\Rightarrow FB=FM\left(3\right)\)

Thế (2),(3) vào (1) \(\Rightarrow\dfrac{FM}{EM}=\dfrac{FK}{AK}\Rightarrow\) \(MK\parallel AE\) \(\Rightarrow MK\bot AB\)

undefined

a: Xét (O) có

CA,CM là tiếp tuyến

nênCA=CM và OC là phân giác của góc AOM(1)

mà OA=OM

nên OC là trung trực của AM

=>OC vuông góc với AM

Xét (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Xét (O)có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>MB vuông góc MA

=>MB//OC

b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ

=>OC vuông góc với OD

mà OM vuông góc DC

nên MC*MD=OM^2

=>AC*BD=R^2

c: Gọi H là trung điểm của CD

Xét hình thang ABDC có

H,O lần lượtlà trung điểm của CD,AB

nên HO là đường trung bình

=>HO//AC//BD

=>HO vuông góc với AB

=>AB là tiếp tuyến của (H)