K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2019

Ta có:\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)

\(\ge\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{b+c+d+a}+\frac{d}{d+a+b+c}=1\)

và  \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)

\(\le\frac{a}{a+c}+\frac{b}{b+d}+\frac{c}{c+a}+\frac{d}{d+b}\)

\(=1+1=2\)

Vậy \(1\le\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\le2\)(đpcm)

4 tháng 10 2020

Từ giả thiết  => \(\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1-\frac{a}{a+1}=\frac{1}{a+1}\)

Áp dụng bđt Cauchy cho 3 số dương : \(\frac{1}{a+1}\ge\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3.\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\). Tương tự: \(\frac{1}{b+1}\ge3.\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}}\)

\(\frac{1}{c+1}\ge3.\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\)

\(\frac{1}{d+1}\ge3.\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

Nhân từ 4 bđt: \(1\ge81abcd\Rightarrow abcd\le\frac{1}{81}\)

14 tháng 11 2016

Đề sai rồi

Nếu giả sử a = b =c = d = 2 thì

\(\frac{2}{2+1}+\frac{2}{2+1}+\frac{2}{2+1}+\frac{2}{2+1}=\frac{8}{3}>2\)

2 tháng 2 2017

Ta có: \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\le1-\frac{d}{d+1}=\frac{1}{d+1}\\\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1-\frac{a}{a+1}=\frac{1}{a+1}\\\frac{a}{a+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1-\frac{b}{b+1}=\frac{1}{b+1}\\\frac{a}{a+1}+\frac{b}{b+1}+\frac{d}{d+1}\le1-\frac{c}{c+1}=\frac{1}{c+1}\end{matrix}\right.\)

Áp dụng BĐT Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\frac{1}{d+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\\\frac{1}{a+1}\ge\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\\\frac{1}{b+1}\ge\frac{a}{a+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}}\\\frac{1}{c+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\end{matrix}\right.\)

Nhân từng vế:

\(\Rightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\frac{a^3b^3c^3d^3}{\left(a+1\right)^3\left(b+1\right)^3\left(c+1\right)^3}}\)

\(\Rightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge\frac{81abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)

\(\Rightarrow1\ge81abcd\)

Vậy \(abcd\le\frac{1}{81}\left(đpcm\right)\)

p/s : lí do tớ tự trả lời câu hỏi của mình là để coi câu trả lời của mình có đúng hay ko thôi nha , mong các bạn đứng có hiểu lầm , nếu bạn nào có cách nào nhanh và gọn hơn thì phiền các bạn chỉ dùm luôn nha.

AH
Akai Haruma
Giáo viên
2 tháng 2 2017

Mình nghĩ cách làm của bạn là ok rồi đấy

Bản chất là ngắn, có điều bạn trình bày quá cẩn thận nên khiến nó dài thôi. Khuyên chân thành là nếu đi thi sau khi áp dụng quy tắc "tương tự" để đỡ tốn thời gian hơn, cũng k bị mất điểm.

6 tháng 1 2018

Theo BĐT AM-GM: \(a^4+b^4\ge2a^2b^2\)

Tương tự suy ra \(a^4+b^4+c^4\)\(\ge a^2b^2+b^2c^2+c^2a^2\)

Tiếp tục dùng AM-GM: \(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2ab^2c\)

Tương tự suy ra \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4+abcd\ge abc\left(a+b+c\right)+abcd\)\(=abc\left(a+b+c+d\right)\)

\(\Rightarrow\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c+d\right)}\)

Tương tự cho 3 BĐT còn lại rồi cộng theo vế:

\(VT\le\frac{a+b+c+d}{abcd\left(a+b+c+d\right)}=\frac{1}{abcd}=VP\)

5 tháng 1 2018

sorry nha!Mik ko bít làm.???

8 tháng 4 2016

ngu nguoi

8 tháng 4 2016

ngu nguoi

NV
16 tháng 3 2019

a/ Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)

\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)

\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)

\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

24 tháng 11 2019

Bài 1:

Ta có: \(\frac{ab}{a+b}=ab.\frac{1}{a+b}\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{b}{4}+\frac{a}{4}\)

Tương tự các BĐT còn lại rồi cộng theo vế ta có d9pcm.

Bài 2: 2 bài đều dùng Svac cả!

24 tháng 11 2019

Bài 2a làm bên h rồi nên chụp lại thôi!

flOnyqL.png (cần thì ib t gửi link cho)

12 tháng 9 2017

ý a ko cần giải đâu nha mk ra òi

Dễ thôi

12 tháng 8 2016

Xét riêng lần lượt với các biểu thức   \(R=\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)  và  

\(Q=\frac{b+c+d}{a}+\frac{a+c+d}{b}+\frac{a+b+d}{c}+\frac{a+b+c}{d},\)  ta có:

\(\text{*) }\) Ta biến đổi biểu thức  \(R\)  bằng cách cộng mỗi biểu thức trong nó với  \(1,\)  cùng lúc đó, ta tạo được một nhân tử mới cho  \(R\)  để phục vụ việc chứng minh. Khi đó,  \(R\)  sẽ mang dạng mới sau:

\(R=\left(a+b+c+d\right)\left(\frac{1}{b+c+d}+\frac{1}{a+c+d}+\frac{1}{a+b+d}+\frac{1}{a+b+c}\right)-4\)

nên   \(R=\frac{1}{3}.\left[3\left(a+b+c+d\right)\right]\left(\frac{1}{b+c+d}+\frac{1}{a+c+d}+\frac{1}{a+b+d}+\frac{1}{a+b+c}\right)-4\)

Đặt  \(x=b+c+d;\)  \(y=a+c+d;\)  \(z=a+b+d;\)  và  \(t=a+b+c\)

Không quên đặt điều kiện cho các ẩn số vừa đặt, ta có:

\(\hept{\begin{cases}x,y,z,t>0\\x+y+z+t=3\left(a+b+c+d\right)\end{cases}}\)

Ta biểu diễn lại các biểu thức  \(R\)  theo các biến vừa mới nêu sau đây:

\(R=\frac{1}{3}\left(x+y+z+t\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)-4\)

Mặt khác,  theo một kết quả quen thuộc được đúc kết từ bất đẳng thức  \(Cauchy-Schwarz\)  ta được:

\(\left(x+y+z+t\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\ge16\)

Và bằng phép chứng minh theo bất đẳng thức  \(AM-GM\)  cho  \(4\) số dương, ta dễ dàng đi đến kết luận rằng bất đẳng thức ở trên là một bất đẳng thức luôn đúng với mọi  \(x,y,z,t>0\)  

Khi đó,  \(R\ge\frac{16}{3}-4=\frac{4}{3}\)

\(\text{*) }\)  Tương tự lập luận cho biểu thức  \(Q,\)  ta cũng có đánh giá khá thú vị cho nó, điển hình:

\(Q\ge12\)

Mà  \(S=R+Q\ge\frac{4}{3}+12=5\frac{1}{3}\)

Cuối cùng, với  \(a=b=c=d>0\)  (thỏa mãn điều kiện) thì  \(S=5\frac{1}{3}\)  nên suy ra  \(5\frac{1}{3}\)  là giá trị nhỏ nhất của biểu thức  \(S\)

13 tháng 8 2016

\(\frac{4}{3}+12=\frac{40}{3}\) chu