xác tổng các hệ số của đa thức :
f(x)=(2x2-3x3+2x+1)10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,`
`Q(x)=` \(\dfrac{1}{2}x+\dfrac{2}{3}x^3-\dfrac{1}{3}x+\dfrac{5}{2}x^2-\dfrac{2}{3}x^3+1\)
`Q(x)=`\(\left(\dfrac{2}{3}x^3-\dfrac{2}{3}x^3\right)+\dfrac{5}{2}x^2+\left(\dfrac{1}{2}x-\dfrac{1}{3}x\right)+1\)
`Q(x)=`\(\dfrac{5}{2}x^2+\dfrac{1}{6}x+1\)
`b,` Bậc của đa thức: `2`
Hệ số cao nhất: `5/2`
Hệ số tự do: `1`
`c,`
`Q(-6)=`\(\dfrac{5}{2}\cdot\left(-6\right)^2+\dfrac{1}{6}\cdot\left(-6\right)+1\)
`= 5/2*36 -1+1 = 90-1+1=90`
`Q(1)= 5/2*1^2+1/6*1+1 = 5/2+1/6+1=8/3+1=11/3`
`Q(2)=5/2*2^2+1/6*2+1=5/2*4+1/3+1=10+1/3+1=31/3+1=34/3`
a) Ta có: \(M\left(x\right)=3x^3+x^2+4x^4-x-3x^3+5x^4+2x^2-6\)
\(=\left(4x^4+5x^4\right)+\left(3x^3-3x^3\right)+\left(x^2+2x^2\right)-x-6\)
\(=9x^4+3x^2-x-6\)
Ta có: \(N\left(x\right)=-2x^2-x^4+4x^3-x^2-5x^3+3x+5+x\)
\(=-x^4+\left(4x^3-5x^3\right)+\left(-2x^2-x^2\right)+\left(3x+x\right)+5\)
\(=-x^4-x^3-3x^2+4x+5\)
c) Ta có: M(x)+N(x)
\(=9x^4+3x^2-x-6-x^4-x^3-3x^2+4x+5\)
\(=8x^4-x^3+3x-1\)
a: \(M\left(x\right)=2x^2+3\)
\(N\left(x\right)=3x^3-2x^2+x\)
b: \(M\left(x\right)+N\left(x\right)=3x^3+x+3\)
\(M\left(x\right)-N\left(x\right)=2x^2+3-3x^3+2x^2-x=-3x^3+2x^2-x+3\)
a,
\(A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức là 3
Hệ số cao nhất ứng với x mũ lớn nhất là 1
a. Ta có:
f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2
= 2x3 + 3x2 - 2x + 3 (0.5 điểm)
g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2
= 2x3 + 3x2 - 7x + 2 (0.5 điểm)
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
a)
\(A\left(x\right)=3x^3+3x^2+2x-1\)
Bậc của A(x) là 3
Hệ số tự do A(x) là -1
Hệ số cao nhất của A(x) là 3
Tại A(-2)
\(A=3.\left(-2\right)^3+3.\left(-2\right)^2+2.\left(-2\right)-1\)
\(=-17\)
b)
\(B\left(x\right)=5x^4+6x-2x^2+4-5x^4-5x\)
\(=\left(5x^4-5x^4\right)+\left(-2x^2\right)+\left(6x-5x\right)+4\)
\(=-2x^2+x+4\)
c)
\(A\left(x\right)-B\left(x\right)=3x^3+3x^2+2x-1-\left(-2x^2+x+4\right)\)
\(=3x^3+3x^2+2x-1+2x^2-x-4\)
\(=3x^3+\left(3x^2+2x^2\right)+\left(2x-x\right)+\left(-1-4\right)\)
\(=3x^3+5x^2+x-5\)
d)
\(C\left(x\right)-2.\left(-2x^2+x+4\right)=3x^3+3x^2+2x-1\)
\(C\left(x\right)=3x^3+3x^2+2x-1+2.\left(-2x^2+x+4\right)\)
\(C\left(x\right)=3x^3+3x^2+2x-1-4x^2+2x+8\)
\(C\left(x\right)=3x^3+\left(3x^2-4x^2\right)+\left(2x+2x\right)+\left(-1+8\right)\)
\(C\left(x\right)=3x^3-x^2+4x+7\)
chúc bạn học giỏi