Cho đường tròn (O), bán kính R. Từ 1 điểm M nằm ngoài đường tròn vẽ 2 tiếp tuyến MA và MA của đường tròn ( A,B là 2 tiếp điểm ). Gọi H là giao điểm của AB và MO. Kẻ đường kính BD. Trên OA lấy điểm N sao cho AN=2ON. Gọi F là trung điểm của AN. Đường trung trực của BN cắt OM tại E. Chứng minh EF//MA và tính tỉ số \(\frac{OE}{OM}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO\(\perp\)AB
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
hay MO⊥AB
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
a: Xét tứ giác OAMB có \(\widehat{OAM}+\widehat{OBM}=90^0+90^0=180^0\)
nên OAMB là tứ giác nội tiếp
=>O,A,M,B cùng thuộc 1 đường tròn
b: Xét (O) có
MA,MB là tiếp tuyến
Do đó: MA=MB
mà OA=OB
nên MO là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó: ΔABC vuông tại B
=>BA\(\perp\)BC
mà AB\(\perp\)OM
nên BC//OM
c: Sửa đề: cắt AB tại I
Xét ΔAOI vuông tại O có OH là đường cao
nên \(HA\cdot HI=OH^2\)
=>\(HB\cdot HI=OH^2\)
Xét ΔOAM vuông tại A có AH là đường cao
nên \(HO\cdot HM=HA^2\)
Xét ΔOHA vuông tại H có \(OA^2=OH^2+HA^2\)
=>\(R^2=HB\cdot HI+HO\cdot HM\)
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó; MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
b: Ta có: ΔONC cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)NC tại I
Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2\)
=>\(OH\cdot OM=R^2\)
Xét ΔOIM vuông tại I và ΔOHK vuông tại H có
\(\widehat{IOM}\) chung
Do đó: ΔOIM đồng dạng với ΔOHK
=>\(\dfrac{OI}{OH}=\dfrac{OM}{OK}\)
=>\(OI\cdot OK=OH\cdot OM=R^2\)
=>\(OI\cdot OK=OC\cdot OC\)
=>\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)
Xét ΔOIC và ΔOCK có
\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)
\(\widehat{IOC}\) chung
Do đó: ΔOIC đồng dạng với ΔOCK
=>\(\widehat{OIC}=\widehat{OCK}\)
=>\(\widehat{OCK}=90^0\)
=>KC là tiếp tuyến của (O)