8sinx.cosx.cos2x = cos (\(\frac{\Pi}{2}-8x\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xét \(sin\frac{x}{5}=0\Rightarrow C=...\)
- Với \(sin\frac{x}{5}\ne0\)
\(C.sin\frac{x}{5}=sin\frac{x}{5}.cos\frac{x}{5}.cos\frac{2x}{5}cos\frac{4x}{5}cos\frac{8x}{5}\)
\(=\frac{1}{2}sin\frac{2x}{5}cos\frac{2x}{5}cos\frac{4x}{5}cos\frac{8x}{5}\)
\(=\frac{1}{4}sin\frac{4x}{5}cos\frac{4x}{5}cos\frac{8x}{5}=\frac{1}{8}sin\frac{8x}{5}cos\frac{8x}{5}\)
\(=\frac{1}{16}sin\frac{16x}{5}\Rightarrow C=\frac{sin\frac{16x}{5}}{16.sin\frac{x}{5}}\)
\(D=sin\frac{x}{7}+sin\frac{5x}{7}+2sin\frac{3x}{7}\)
\(=2sin\frac{3x}{7}cos\frac{2x}{7}+2sin\frac{3x}{7}\)
\(=2sin\frac{3x}{7}\left(cos\frac{2x}{7}+1\right)=4cos^2\frac{x}{7}.sin\frac{3x}{7}\)
\(A=cos\frac{\pi}{7}cos\frac{3\pi}{7}cos\frac{5\pi}{7}=cos\frac{\pi}{7}cos\frac{4\pi}{7}cos\frac{2\pi}{7}\)
\(\Rightarrow A.sin\frac{\pi}{7}=sin\frac{\pi}{7}.cos\frac{\pi}{7}.cos\frac{2\pi}{7}cos\frac{4\pi}{7}\)
\(=\frac{1}{2}sin\frac{2\pi}{7}cos\frac{2\pi}{7}cos\frac{4\pi}{7}=\frac{1}{4}sin\frac{4\pi}{7}cos\frac{4\pi}{7}\)
\(=\frac{1}{8}sin\frac{8\pi}{7}=\frac{1}{8}sin\left(\pi+\frac{\pi}{7}\right)=-\frac{1}{8}sin\frac{\pi}{7}\)
\(\Rightarrow A=-\frac{1}{8}\)
\(B=sin6.cos48.cos24.cos12\)
\(B.cos6=sin6.cos6.cos12.cos24.cos48\)
\(=\frac{1}{2}sin12.cos12.cos24.cos48=\frac{1}{4}sin24.cos24.cos48\)
\(=\frac{1}{8}sin48.cos48=\frac{1}{16}sin96\)
\(=\frac{1}{16}sin\left(90+6\right)=\frac{1}{16}cos6\Rightarrow B=\frac{1}{16}\)
ADCT: sin2a=2sina.cosa
cos2a=2cos2a-1 (a ở đây có thể là: x, 2x,3x, pi/2-x,......)
a)
pt<=>4sin2x.cos2x=cos2.(\(\dfrac{\Pi}{4}\)-4x)
<=>2sin4x=2cos2(\(\dfrac{\Pi}{4}\)-4x)-1
<=>2sin4x=2.(\(\dfrac{\sqrt{2}}{2}\))2.(cos4x+sin4x)2-1
<=>2sin4x=(cos24x+sin24x)+2sin4x.cos4x-1
<=>2sin4x=1+2sin4x.cos4x-1
<=>2sin4x(1-cos4x)=0
Tới đây đơn giản rồi bạn tự giải đi!
b)
Pt<=>(sinx.cos\(\dfrac{\Pi}{2}\)+cosx.sin\(\dfrac{\Pi}{2}\))4-sin4x=sin4x
<=>cos4x-sin4x=sin4x
<=>(cos2x-sin2x)(cos2x+sin2x)-sin4x=0
cos2x+sin2x=1, cos2x-sin2x=cos2x
<=>cos2x-2sin2x.cos2x=0
<=>cos2x(1-2sin2x)=0
Tự giải dc rồi chứ????
a) \(A = \frac{{\sin \frac{\pi }{{15}}\cos \frac{\pi }{{10}} + \sin \frac{\pi }{{10}}\cos \frac{\pi }{{15}}}}{{\cos \frac{{2\pi }}{{15}}\cos \frac{\pi }{5} - \sin \frac{{2\pi }}{{15}}\sin \frac{\pi }{5}}} = \frac{{\sin \left( {\frac{\pi }{{15}} + \frac{\pi }{{10}}} \right)}}{{\cos \left( {\frac{{2\pi }}{{15}} + \frac{\pi }{5}} \right)}} = \frac{{\sin \frac{\pi }{6}}}{{\cos \frac{\pi }{3}}} = 1\)
b) \(B = \sin \frac{\pi }{{32}}\cos \frac{\pi }{{32}}\cos \frac{\pi }{{16}}\cos \frac{\pi }{8} = \frac{1}{2}\sin \frac{\pi }{{16}}.\cos \frac{\pi }{{16}}.\cos \frac{\pi }{8} = \frac{1}{4}\sin \frac{\pi }{8}.\cos \frac{\pi }{8} = \frac{1}{8}\sin \frac{\pi }{4} = \frac{1}{8}.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 2 }}{{16}}\;.\)
\(\Leftrightarrow4cosx\left(cos2x+cos\frac{4\pi}{3}\right)\left(cos6x+cos\frac{4\pi}{3}\right)=sin9x\)
\(\Leftrightarrow cosx\left(2cos2x-1\right)\left(2cos6x-1\right)=sin9x\)
\(\Leftrightarrow\left(2cos2x.cosx-cosx\right)\left(2cos6x-1\right)=sin9x\)
\(\Leftrightarrow\left(cos3x+cosx-cosx\right)\left(2cos6x-1\right)=sin9x\)
\(\Leftrightarrow cos3x\left(2cos6x-1\right)=sin9x\)
\(\Leftrightarrow2cos6x.cos3x-cos3x=sin9x\)
\(\Leftrightarrow cos9x+cos3x-cos3x=sin9x\)
\(\Leftrightarrow cos9x=sin9x\)
\(cos\frac{4\pi}{3}=-\frac{1}{2}\), sau đó số 4 bên ngoài bạn biến thành 2 số 2 nhân vào 2 cái ngoặc là được thôi
\(C=cos\frac{\pi}{9}+cos\frac{8\pi}{9}+cos\frac{2\pi}{9}+cos\frac{7\pi}{9}+...+cos\frac{4\pi}{9}+cos\frac{5\pi}{9}+cos\pi\)
\(C=cos\frac{\pi}{9}+cos\left(\pi-\frac{\pi}{9}\right)+cos\frac{2\pi}{9}+cos\left(\pi-\frac{2\pi}{9}\right)+...+cos\frac{4\pi}{9}+cos\left(\pi-\frac{4\pi}{9}\right)-1\)
\(C=cos\frac{\pi}{9}-cos\frac{\pi}{9}+cos\frac{2\pi}{9}-cos\frac{2\pi}{9}+...+cos\frac{4\pi}{9}-cos\frac{4\pi}{9}-1\)
\(C=-1\)