K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2019

+ \(x^2+y^2=9\Rightarrow\left(x+y\right)^2-9=2xy\)

\(\Rightarrow\left(x+y+3\right)\left(x+y-3\right)=2xy\Rightarrow x+y+3=\frac{2xy}{x+y-3}\)

\(\Rightarrow Q=\frac{xy}{\frac{2xy}{x+y-3}}=\frac{x+y-3}{2}\le\frac{\sqrt{2\left(x^2+y^2\right)}-3}{2}=\frac{3\sqrt{2}-3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{3\sqrt{2}}{2}\)

19 tháng 7 2021

a) Áp dụng bất đẳng thức Cosi ta có :

\(x^2+1\geq 2x\\ 4y^2+1\geq 4y\\ 9z^2+1\geq 6z\)

Suy ra \(S\leq 6\)

Dấu = xảy ra khi \(x=1;y=\frac{1}{2}; z=\frac{1}{3}\)

 

24 tháng 12 2019

Ta co:

 \(9=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\Rightarrow-3\sqrt{2}\le x+y\le3\sqrt{2}\)

Dat \(\hept{\begin{cases}a=x+y\\b=xy\end{cases}\left(a\ne-3,-3\sqrt{2}\le a\le3\sqrt{2}\right)}\)

\(\Rightarrow a^2-2b=9\Leftrightarrow\frac{a^2}{2}-\frac{9}{2}=b\) 

\(\Rightarrow Q=\frac{b}{a+3}=\frac{a^2-9}{2a+6}=\frac{a-3}{2}=\frac{x+y-3}{2}\)

Xet \(0\le x+y\le3\sqrt{2}\)

\(\Rightarrow Q=\frac{x+y-3}{2}\le\frac{\sqrt{2\left(x^2+y^2\right)}-3}{2}=\frac{3\sqrt{2}-3}{2}\)  

Dau '=' xay ra khi \(x=y=\frac{3}{\sqrt{2}}\)

Xet \(-3\sqrt{2}\le x+y< 0\)

\(\Rightarrow Q=\frac{x+y-3}{2}\ge\frac{-3\sqrt{2}-3}{2}\)

Dau '=' xay ra khi \(x=y=-\frac{3}{\sqrt{2}}\)

12 tháng 5 2021

Áp dụng bất đẳng thức Svacxo và bất đẳng thức \(\frac{1}{4ab}\ge\frac{1}{\left(a+b\right)^2}\)ta có :

\(Q=\frac{2}{x^2+y^2}+\frac{2}{2xy}+\frac{4}{2xy}=2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{8}{4xy}\)

\(\ge2\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{8}{\left(x+y\right)^2}=\frac{2.4}{2^2}+\frac{8}{2^2}=\frac{16}{4}=4\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=1\)

Vậy min Q = 4 khi x = y = 1

15 tháng 4 2021

\(A=x^2+y^2\) hả bạn?

5 tháng 6 2018

\(x+\sqrt{x+yz}=x+\sqrt{x\left(x+y+z\right)+yz}=x+\sqrt{x^2+yz+x\left(z+y\right)}\)

\(\ge x+\sqrt{2\sqrt{x^2yz}+x\left(y+z\right)}=x+\sqrt{x\cdot2\sqrt{yz}+x\left(y+z\right)}=x+\sqrt{x\left(y+z+2\sqrt{yz}\right)}\)

\(=x+\sqrt{x\left(\sqrt{y}+\sqrt{z}\right)^2}=x+\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)\)

\(\Rightarrow\frac{x}{x+\sqrt{x+yz}}\le\frac{x}{x+\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

tương tự :

\(\frac{y}{y+\sqrt{y+xz}}\le\frac{\sqrt{y}}{\sqrt{y}+\sqrt{x}+\sqrt{z}}\)

\(\frac{z}{z+\sqrt{z+xy}}\le\frac{\sqrt{z}}{\sqrt{z}+\sqrt{x}+\sqrt{y}}\) 

cộng vế theo vế ta được 

\(\frac{x}{x+\sqrt{x+yz}}+\frac{y}{y+\sqrt{y+zx}}+\frac{z}{z+\sqrt{z+xy}}\le\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

dấu "=" xảy tra khi x=y=z=1/3

28 tháng 3 2020

cái này thì chịu

6 tháng 6 2016

x>y=> x-y>0

\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)

=> áp dụng bđt cosi ta có: \(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right).\frac{2}{\left(x-y\right)}}=2\sqrt{2}\Leftrightarrow\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)