62n>100
62n=1296
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A, \(5n=625\)
\(\Rightarrow n=625:5\)
\(\Rightarrow n=125\)
B, \(6^{2n}=1296\)
\(\Rightarrow6^{2n}=6^4\)
\(\Rightarrow2n=4\)
\(\Rightarrow n=2\)
C, \(6^{2n}>100\)
\(\Rightarrow\left(6^n\right)^2>10^2\)
\(\Rightarrow6^n>10\)
\(\Rightarrow n\ge2\) (mình không biết có đúng không)
Đ, \(25< 4n< 100\)
Vì \(4n⋮4\)
\(\Rightarrow4n\in\left\{28;32;36;...;92;96\right\}\)
\(\Rightarrow n\in\left\{7;8;9;...;23;24\right\}\)
125.(-61).(-2)3.(-1)2n(n thuộc N*)
= 125 . (-61).(-8).1
= [ 125. (-8) ] . (-61.1)
= - 1000 . -61
= 61 000
\(\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}=1\\xyz\left(x+y+z\right)\left(x+1\right)\left(y+1\right)\left(z+1\right)=1296\end{matrix}\right.\)
Đặt \(\dfrac{1}{x+1}=a;\dfrac{1}{y+1}=b;\dfrac{1}{z+1}=c\left(a,b,c>0\right)\)
\(\Rightarrow a+b+c=1\)
\(\dfrac{1}{x+1}=a\)
\(\Rightarrow x+1=\dfrac{1}{a}\)
\(\Rightarrow x=\dfrac{1}{a}-1=\dfrac{1-a}{a}=\dfrac{b+c}{a}\)
Tương tự, ta có: \(y=\dfrac{a+c}{b};z=\dfrac{a+b}{c}\)
Đặt \(M=xyz\left(x+y+z\right)\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(=\dfrac{\left(b+c\right)\left(a+c\right)\left(a+b\right)}{abc}\times\left(\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\right)\times\dfrac{1}{abc}\)
\(=\dfrac{\left(b+c\right)\left(a+c\right)\left(a+b\right)}{a^2b^2c^2}\times\left(\dfrac{b}{a}+\dfrac{a}{b}+\dfrac{c}{a}+\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{c}\right)\)
\(\ge\dfrac{8abc}{a^2b^2c^2}\times\left(2+2+2\right)\) (bđt AM - GM)
\(\ge\dfrac{8}{\dfrac{\left(a+b+c\right)^3}{27}}\times6=1296\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\Rightarrow x=y=z=2\)
62n=1296
62n=64
=>2n=4
n=4:2
n=2
Chúc bn học tốt