K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

Chủ đề về lạnh nha

Mùa đông đã đến thật rồi

Nếu e thấy lạnh thì ngồi bên anh

25 tháng 11 2021

5

25 tháng 11 2021

5

7 tháng 7 2017

Vì p là số nguyên tố lớn hơn 3 nên p lẻ

=> p+2015 và p+2017 là 2 số chẵn liên tiếp

=> (p+2015)(p+2017) chia hết cho 8(1)

mặt khác p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 và 3k+2

Nếu p=3k+1 thì (p+2015)(p+2017)=(3k+1+2015)(3k+1+2017)=3(k+672)(3k+2018) chia hết cho 3=>(p+2015)(o+2017) chia hết cho 3(2)

Nếu p=3k+2 chứng minh tương tự ta đc (p+2015)(p+2017) chia hết cho 3(3)

Từ (1),(2),(3) => (p+20150(p+2017) chia hết cho 24

=> ĐPCM

19 tháng 3 2018

tìm x sao cho 2 + 2x+1 + 2x+2 + 2x+3  + ... +2x+2015 = 22017 - 2

giải giúp mình với

14 tháng 11 2022

4 và 6

 

Đặt \(A=p^2-1\)

p là số nguyên tố lớn hơn 3 nên p là số lẻ và p không chia hết cho 3

Vì p là số lẻ nên p=2x+1

\(A=p^2-1=\left(p-1\right)\left(p+1\right)\)

\(=\left(2x+1-1\right)\left(2x+1+1\right)=2x\left(2x+2\right)=4x\left(x+1\right)\)

Vì x;x+1 là hai số tự nhiên liên tiếp

nên x(x+1)⋮2

=>4x(x+1)⋮4*2

=>A⋮8(1)

Vì p là số không chia hết cho 3 nên p=3k+1 hoặc p=3k+2

TH1: p=3k+1

A=(p-1)(p+1)

=(3k+1-1)(3k+1+1)

\(=3k\left(3k+2\right)\) ⋮3(2)

TH2: p=3k+2

A=(p-1)(p+1)

=(3k+2-1)(3k+2+1)

=(3k+1)(3k+3)

=3(k+1)(3k+1)⋮3(3)

Từ (2),(3) suy ra A⋮3

mà A⋮8

và ƯCLN(3;8)=1

nên A⋮3*8

=>A⋮24

12 tháng 12 2015

Nếu p nguyên tố mà > 3 =>p= 3k+1 hoặc p=3k+2 

nếu p=3k+1 => p+2=3k+1+2=3k+3 mà 3k+3 > 3 => p+2 là hợp số ( loại )

=> p=3k+2 . Nếu p=3k+2 => p+1=3k+1+2=3k+3 =>p+1 là hợp số 

=> p+1 chia hết cho 2 ma (2;3)=1 => p+1 chia hết cho 6