K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2019

giúp mình với

27 tháng 9 2018

a: Xét tứ giác MCDN có

MC//DN

MC=DN

MC=CD

=>MCDN là hình thoi

b: Xét ΔCMD có CM=CD và góc C=60 độ(=góc BAD)

nên ΔCMD đều

=>góc CMD=60 độ

góc BMD+góc CMD=180 độ(kề bù)

=>góc BMD=180-60=120 độ

=>góc BMD=góc B

Xét tứ giác ABMD có

BM//AD

góc ABM=góc BMD

=>ABMD là hình thang cân

=>AM=BD

c: Xét ΔKAD có BM//AD

nên BM/AD=KM/KD=KB/KA

=>KM/KD=KB/KA=1/2

=>Mlà trung điểm của KD, B là trung điểm của KA

Xét ΔKAD có

AM,DB,KN là trung tuyến

=>AM,DB,KN đồng quy

NV
10 tháng 8 2021

c.

K thuộc AD nên BC song song DK

Áp dụng định lý Talet: \(\dfrac{BN}{KN}=\dfrac{CN}{DN}=1\Rightarrow BN=KN\) hay N là trung điểm BK

\(\Rightarrow\) BCKD là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Theo câu b, E, M, N thẳng hàng nên Q nằm trên MN (1)

Mà MN là đường trung bình của hình thang ABCD

\(\Rightarrow MN||AD\Rightarrow MN\perp AB\) (2)

Mà M là trung điểm AB (3)

(2);(3) \(\Rightarrow\) MN là trung trực AB (4)

(1);(4) \(\Rightarrow QB=QA\)

d.

Hạ CH vuông góc AD

Trong tam giác vuông CHK: \(cosKAC=\dfrac{AH}{AC}\Rightarrow AH=AC.cos\widehat{KAC}\)

Pitago: \(CH^2+AH^2=AC^2\)

Do đó: \(CK^2=CH^2+HK^2=CH^2+\left(AK-AH\right)^2=CH^2+AH^2+AK^2-2AK.AH\)

\(=AC^2+AK^2-2AK.AC.cos\widehat{KAC}\) (đpcm)

NV
10 tháng 8 2021

undefined

25 tháng 10 2018

cccccccccccccccccccccccccccccccuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuutttttttttttttttttttttttttttttttttttt

12 tháng 12 2021

a: Xét tứ giác ABMN có 

AN//BM

AN=BM

Do đó: ABMN là hình bình hành

mà AB=BM

nên ABMN là hình thoi

12 tháng 12 2021

yeu

25 tháng 11 2023

1: E là trung điểm của AB

=>\(EA=EB=\dfrac{AB}{2}\)(1)

K là trung điểm của CD

=>\(DK=KC=\dfrac{DC}{2}\)(2)

ABCD là hình vuông

=>AB=DC(3)

Từ (1),(2),(3) suy ra AE=EB=CK=KD

Xét tứ giác AECK có

AE//CK

AE=CK

Do đó: AECK là hình bình hành

2: Xét ΔFCD vuông tại C và ΔEBC vuông tại B có

FC=EB

CD=BC

Do đó: ΔFCD=ΔEBC

=>\(\widehat{FDC}=\widehat{ECB}\)

mà \(\widehat{FDC}+\widehat{DFC}=90^0\)(ΔDFC vuông tại C)

nên \(\widehat{ECB}+\widehat{DFC}=90^0\)

=>DF\(\perp\)CE tại M

3: AECK là hình bình hành

=>AK//CE

AK//CE

CE\(\perp\)DF

Do đó: AK\(\perp\)CE tại N

Xét ΔDMC có

K là trung điểm của DC

KN//MC

Do đó: N là trung điểm của DM

4: Xét ΔADM có

AN là đường cao

AN là đường trung tuyến

Do đó: ΔADM cân tại A

=>AD=AM

mà AD=AB

nên AM=AB

6 tháng 12 2015

a) Chứng minh tứ giác MBKD là hình thang.( bạn tự vẽ hình nhé!)
- Đầu tiên CM tứ giác MBND là hình bình hành.
Vì ABCD là hình bình hành  AD = BC  AN = ND = BM = MC
Và  AD // BC=>  ND // BM
Xét tứ giác MBND, ta có:
ND // BM 
ND = BM
 Tứ giác MBND là hình bình hành. 
 NB // MD . Mà NB giao với MD = {K}=>  B, N , K thẳng hàng.
Xét tứ giác MBKD, ta có:
NB // MD
B, N , K thẳng hàng
=> MD // BK
 =>Tứ giác MBKD là hình thang ( đpcm ).

b)
Vì P thuộc BK, Q thuộc MD mà BK // MD  QM // PN ( 1 )
Vì P thuộc AM, Q thuộc NC  PM // QN (2)
Từ (1), (2)=>  PMQN là hình bình hành. ( 3 )
Theo CM ở câu a)  ANMB là hình thoi ( có 4 cạnh bằng nhau )
 AM vuông góc với BN. (4)
Từ (3), (4)  PMQN là hình chữ nhật.
c) Để PMQN là hình vuông thì hình bình hành phải có thêm điều kiện là góc A = 90o
Nếu A = 90o  thì tứ giác ANMB là hình vuông=>  AM vuông góc với BN
Theo tính chất đường chéo của hình vuông=>  PN = PM
 Hình chữ nhật PMQN có 2 cạnh kề bằng nhau nên nó sẽ là hình vuông ( đpcm )

6 tháng 12 2015

 

của luckybaby_98 trên diễn đàn học mãi giống y chang luôn, mih cx có nick trên diễn đàn học mãi mak