chứng minh răng trong 4 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 4 số tự nhiên liên tiếp là a; a+1;a+2;a+3
nếu a chia hết cho 4 -> điều phải chứng minh
nếu a chia 4 dư 1 thì a+3 chia hết cho 4-> dpcm
nếu a chia 4 dư 2 thì a+2 chia hết cho 4 -> dpcm
nếu a chia 4 dư 3 thì a+1 chia hết cho 4 -> dpcm
tick cho mình nha
Vì trong 4 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 4
=> số đó chia hết cho 4
a, ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => ĐPCM
Vậy trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
a, Thí dụ: 2; 3; 4; 5 có 5-2=3 chia hết cho 3
9;10;11;12 có 12 - 9 = 3 chia hết cho 3
b, Thí dụ: 1;2;3;4;5 Có 5-1=4 chia hết cho 4
6;7;8;9;10 có 10-6=4 chia hết cho 4
Gọi 4 số tự nhiên liên tiếp là a;a+1;a+2;a+3
Ta có: a+a+1+a+2+a+3=( a+a+a+a)+(1+2+3)
= ax4+6
Vì ax4 chia hết cho 4 nhưng 6 ko chia hết cho 4
=> tổng 4 số tự nhiên liên tiếp ko chia hết cho 4
nên xem lại đề
Ta có 4 số tự nhiên liên tiếp:n;n+1;n+2;n+3; nếu n chia hết cho 5 suy ra ĐPCM
nếu n chia 4 dư 1 suy ra n+3 chia hết cho 4
nếu n chia 4 dư 2 suy ra n+2 chia hết cho 4
nếu n chia 4 dư 3 suy ra n+1 chia hết cho 4
Suy ra trong 4 số TN liên tiếp chia hết cho 4
Nếu cần mk làm câu 2 trc :
2)
a.
Gọi số tự nhiên đầu tiên là a
=> 2 số tiếp theo là a+1 và a+2
=> Tổng của chúng là :
a + a + 1 + a + 2
= 3a + 3
= 3 ( a + 2 ) chia hết cho 3 ( đpcm )
b.
Gọi số tự nhiên đầu tiên là a
=> 3 số tiếp theo là a+1; a+2 và a+3
=> tổng của chúng là :
a + a + 1 + a + 2 + a + 3
= 4a + 6
ta có 4a chia hết cho 4 mà 6 ko chia hết cho 4
=> ko chia hết
1)
a.
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
+) Nếu a chia hết cho 3 => đpcm
+) Nếu a ko chia hết cho 3 : ( có 2 trường hợp )
TH1 : a = 3k + 1
=> a + 2 = 3k + 1 + 2
=> a + 2 = 3k + 3
=> a + 2 = 3 ( k + 1 ) chia hết cho 3
=> a + 2 chia hết cho 3 ( đpcm )
TH2 : a = 3k + 2
=> a + 1 = 3k + 2 + 1
=> a + 1 = 3k + 3
=> a + 1 = 3 ( k + 1 ) chia hết cho 3
=> a + 1 chia hết cho 3 ( đpcm )
a) Gọi số đó là x thì 4 số tự nhiên liên tiếp là : x ; x + 1 ; x + 2 ; x + 3
Ta để ý thì ta thấy tích 3 số tự nhiên liên tiếp luôn chia hết cho 6 ( Cái này nhỏ hơn nên bạn có thể tự CM )
Một trong 4 số liên tiếp này có ít nhât 1 số chia hết cho 4
=> tích chia hết cho 6.4 = 24
b) Từ cách CM trên, bạn có thể chứng minh 5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5
Và tích liên tiếp trên sẽ chia hết cho 24.5 = 120
Gọi 4 STN liên tiếp đó là n , n+1 , n+2 , n+3
Số tự nhiên n khi chia cho 4 có 1 trong4 số dư sau : 0 ;1;2;3
TH1: n : 4 dư 0 => n chia hết cho 4
TH2 : n : 4 dư 1 => ( n+3 ) chia hết cho 4
TH3: n: 4 dư 2 => ( n + 2 ) chia hết cho 4
TH4: n : 4 dư 3 => ( n+1 ) chia hết cho 4
Vậy trong mọi trường hợp thì trong 4 số tự nhiên liên tiếp : n, n+1 , n+2 , n+3 có 1 số chia hết cho 4