K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

a: Xét tứ giác AECK có 

AK//CE

AK=CE

Do đó: AECK là hình bình hành

28 tháng 10 2021

a: Xét tứ giác AECK có 

AK//CE

AK=CE

Do đó: AECK là hình bình hành

24 tháng 10 2021

a: Xét tứ giác AECK có 

AK//CE

AK=CE

Do đó: AECK là hình bình hành

a: Xét tứ giác AECK có

AK//EC

AK=EC

Do đó: AECK là hình bình hành

a: Xét tứ giác AECK có

AK//CE

AK=CE

=>AECK là hình bình hành

b: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

AKCE là hbh

=>AC cắt KE tại trung điểm của mỗi đường

=>O là trung điểm của KE

c: Xét ΔDMC có

E là trung điểm của DC

EN//MC

=>N là trung điểm của DM

=>DN=NM

Xét ΔABN có

K là trung điểm của BA

KM//AN

=>M là trung điểm của BN

=>DN=MN=MB

a: Xét tứ giác AECK có

AK//CE

AK=CE

=>AECK là hình bình hành

b: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm của AC

AECK là hbh

=>AC cắt EK tại trung điểm của mỗi đường

=>E,O,K thẳng hàng

c: Xét ΔDMC có

E là trung điểm của DC

EN//MC

=>N là trung điểm của DM

=>DN=NM

Xét ΔABN có

K là trung điểm của BA

KM//AN

=>M là trung điểm của BN

=>MB=MN=DN

23 tháng 11 2021

a) Ta có: \(AB=DC,AB//CD\)(ABCD là hình bình hành)

Mà \(K,E\in AB,CD;AK=\dfrac{1}{2}AB;CE=\dfrac{1}{2}CD\)

\(\Rightarrow AK=CE\) và \(AK//CE\)

=> AECK là hình bình hành

b) Ta có: O là giao điểm 2 đường chéo AC và BD

=> O là trung điểm AC

=> O là trung điểm KE(AECK là hình bình hành)

=> E,O,K thẳng hàng

 

 

24 tháng 11 2021

a. Vì ABCD là hbh nên \(AB=CD\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}CD\Rightarrow AK=BK=EC=ED\)

Mà AB//CD nên AK//CE

Vậy AECK là hbh

b. Vì ABCD là hbh mà O là giao của AC và BD nên O là trung điểm AC và BD

Mà AECK là hbh nên O cũng là trung điểm EK

Vậy E,O,K thẳng hàng

AH
Akai Haruma
Giáo viên
13 tháng 10 2023

Lời giải:

a. Vì $ABCD$ là hình bình hành nên $AB=CD$

$\Rightarrow \frac{1}{2}AB=\frac{1}{2}CD$
$\Rightarrow AF=CE(1)$

Mặt khác: $AB\parallel CD\Rightarrow AF\parallel CE(2)$

Từ $(1); (2)\Rightarrow AECF$ là hình bình hành.

b. 

B, E,F thẳng hàng??? Bạn xem lại đề.