Cho G và G' lần lượt là trọng tâm của tam giác ABC và A'B'C' Tính tổng vecto AA'+BB'+CC'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chưa học trả lời làm gì cho mất thời gian mất công bạn Thanh Trang Hoàng phải đọc
Gọi M và M’ tương ứng là trung điểm của AC và A’C’, ta có:
I ∈ BM, G ∈ C′M, K ∈ B′M′
Theo tính chất trọng tâm của tam giác ta có:
Ta có :
Mặt khác IG và IK ⊂ (IGK) nên (IGK) // (BB′C′C)
b) Gọi E và F tương ứng là trung điểm của BC và B’C’, O là trung điểm của A’C. A, I, E thẳng hàng nên (AIB’) chính là (AEB’). A’, G, C thẳng hàng nên (A’GK) chính là (A’CF).
Ta có B′E // CF (do B’FCE là hình bình hành ) và AE // A′F nên (AIB′) // (A′GK).
- Gọi G là trọng tâm \(\Delta ABC\), trung tuyến BE cắt A'C tại E'.
- Gọi trung điểm B'C' là D'. BE và D'C là đường trung bình của \(\Delta CAB'\)và \(\Delta C'AB'\)
=> BE // D'C và BE = D'C
Trung tuyến AD là đường trung bình của \(\Delta BCA'\Rightarrow GE'=BG=\frac{2}{3}\cdot BE=\frac{2}{3}\cdot D'C\)
Gọi G' là giao của A'D' và BE' ta có:
Áp dụng định lí Talet:
\(\frac{G'E'}{D'C}=\frac{A'E'}{A'C}=\frac{AG}{AD}=\frac{2}{3}\) (AD // A'C do là đường trung bình của \(\Delta BA'C\))
\(\Rightarrow G'E'=\frac{2}{3}\cdot D'C\)
=> G'E' = GE'.
Do G và G' cùng nằm trên BE' và G, G' nằm cùng phía so với E' nên G và G' trùng nhau.
Như vậy trung tuyến A'D' đi qua G, tương tự trung tuyến B'M' cũng đi qua G
=> G là trọng tâm của \(\Delta A'B'C'\)
"Nếu G là trọng tâm \(\Delta ABC\) thì vtGA + vtGB + vtGC = vt0"
Gọi giao của AG và BC là D. Trên AD kéo dài lấy E sao cho
DE = DG => GE = GA => vtGE = - vtGA.
Do GE và BC cắt nhau tại trung điểm D của chúng nên BGCE là hình bình hành
=> vtGB + vtGC = vtGE = -vtGA => vtGA + vtGB + vtGC = vt0
Gọi G là trọng tâm ABC, G' là trọng tâm \(\Delta A'B'C'\)
=> vtGA + vtGB + vtGC = vt0, vtG'A' + vtG'B' + vtG'C' = vt0
=> vt0 = (vtG'G + vtGA + vtAA') + (vtG'G + vtGB + vtBB') + (vtG'G + vtGC + vtCC')
=3vtG'G + (vtGA + vtGB + vtGC) + (vtBA + vtCB + vtAC)
=3vtG'G + vt0 + (vtBA + vtAC + vtCB) = 3vtG'G + vt0
=> vtG'G = vt0
=> G' trùng với G
a) CC′ // BB′ ⇒ ΔICC′ ∼ ΔIBB′
CC′ // AA′ ⇒ ΔJCC′ ∼ ΔJAA′
AA′ // BB′ ⇒ ΔKAA′ ∼ ΔKBB′
b) Gọi H và H’ lần lượt là trung điểm của các cạnh BC và B’C’. Vì HH’ là đường trung bình của hình thang BB’CC’ nên HH′ // BB′.
Mà BB′ // AA′ suy ra HH′ // AA′
Ta có: G ∈ AH và G′ ∈ A′H′ và ta có:
c) AH′ ∩ GG′ = M ⇒ GG′ = G′M + MG
Ta có: G′M // AA′ ⇒ ΔH′G′M ∼ ΔH′A′A
MG // HH′ ⇒ ΔAMG ∼ ΔAH′H
Mặt khác HH’ là đường trung bình của hình thang BB’CC’ nên
Ta có:
\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)
Mà \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{AG}=\dfrac{2}{3}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
\(\dfrac{1}{3}\left(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}\right)=\dfrac{1}{3}\left(\overrightarrow{AG}+\overrightarrow{GG'}+\overrightarrow{G'A'}+\overrightarrow{BG}+\overrightarrow{GG'}+\overrightarrow{G'B'}+\overrightarrow{CG}+\overrightarrow{GG'}+\overrightarrow{G'C'}\right)\)
\(=\dfrac{1}{3}.3.\overrightarrow{GG'}=\overrightarrow{GG'}\)