tìm số tự nhiên nhỏ nhất, biết số đó khi chia cho 3,4,5,6 đều dư 2 còn chia cho 7 thì ko dư
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số đó là a thì a-2 chia hết cho 3,4,5,6 và a-2 chia 7 dư 1
để a nhỏ nhất => a-2 nhỏ nhất => a-2=120=>a=122
Gọi số đó là \(a(a\in N;a\leq3)\)
The đề bài tao có: \((a-2)\vdots 3;4;5;6\) hay \((a-2)\in BC\{3;4;5;6\}\)
\(BCNN\{3;4;5;6\}=2^2.3.5=60 \) nên \(BC\{3;4;5;6\}=\{0;60;120;180;...\}\)
\(\implies (a-2)\in\{0;60;120;180;...\}\)
\(\implies a\in\{2;62;122;182;...\}\)
Thất 122 là số nhỏ nhất trong các số trên chia cho 7 dư 3.
Vậy số cần tìm là 122.
~ Hok tốt a~
a) Gọi số đó là a (\(a\in N;a\ge3\)) thì từ đề toán,ta suy ra a - 2 chia hết cho 3 ; 4 ; 5 ; 6 hay a - 2\(\in\)BC(3 ; 4 ; 5 ; 6)
BCNN(3 ; 4 ; 5 ; 6) = 22.3.5 = 60 nên BC(3 ; 4 ; 5 ; 6) = {0 ; 60 ; 120 ; 180 ; ...}\(\Rightarrow a\in\){2 ; 62 ; 122 ; 182 ; ..}
Ta thấy 122 là số nhỏ nhất chia 7 dư 3 trong tập hợp trên nên số cần tìm là 122
b) Giả sử ƯCLN(a ; b) = d thì a = dm ; b = dn(\(m,n\in Z^+\)) và ƯCLN(m ; n) = 1
ƯCLN(a,b).BCNN(a,b) = ab nên BCNN(a,b) = ab : ƯCLN(a,b) = d2mn = dmn
Ta có : 23 = ƯCLN(a,b) + BCNN(a,b) = d(1 + mn) => 1 + mn\(\in\)Ư(23) = {1 ; 23} mà\(mn\ge1\left(m,n\in Z^+\right)\)
\(\Rightarrow1+mn\ge2\)=> 1 + mn = 23 => mn = 22 ; d = 1 => a = m ; b = n mà (m ; n) = (1 ; 22) ; (2 ; 11) và 2 hoán vị
Vậy 2 số cần tìm là 1 và 22 hoặc 2 và 11
tim dien h tam giac ABC biet dien h hinh thang KQCB bang 132cm2 biet AK =2/3AB QC=3/2QA
Gọi số đó là a(với a thuộc N;a nhỏ hơn hoặc bằng 3)
Từ đề bài ,ta suy ra a-2 chia hết cho 3;4;5;6 hay a-2 thuộc BC(3,4,5,6)
BCNN(3,4,5,6)=22.3.5=60 nên BC(3,4,5,6)={0;60;120;180;...}
=>a thuộc {2;62;122;182;...}
Ta thấy 122 là số nhỏ nhất chia 7 dư 3 trong tập hợp trên
Vậy số cần tìm là 122
Ta gọi số đó là a (a thuộc N)theo đề bài ta có a chia cho 2;3;4;5;6; đều dư 1 (1).Vậy a-1 chia hết cho 2;3;4;5;6 mà đề bài bảo rằng số đó là số nhỏ nhất (2).Từ (1) và (2) ta suy ra a-1 là BCNN(2;3;4;5;6) mà BCNN(2;3;4;5;6) là 60 . Ta thấy đề bài nói số đố phải chia hết cho 7 nên a-1 chia hết cho 7. Ta lấy 60.7=420. Vậy a=420+1=421.Vậy số ta cần tìm là 421 (Chúc bạn học tốt nhé)
Lời giải:
Gọi số tự nhiên thỏa mãn đề là $n$. Vì số đó chia $3,4,5,6$ đều dư $2$ nên số đó sẽ có dạng
$n=BCNN(3,4,5,6).k+2$ với $k$ tự nhiên
$n=60k+2$
$n$ chia $7$ dư $3$ nghĩa là $n-3\vdots 7$
$\Leftrightarrow 60k-1\vdots 7$
$\Leftrightarrow 63k-(60k-1)\vdots 7$
$\Leftrightarrow 3k+1\vdots 7$
$\Leftrightarrow 3k-6\vdots 7$
$\Leftrightarrow k-2\vdots 7$ nên $k=7t+2$ với $t$ tự nhiên.
Thay vô $n$ thì $n=60k+2=60(7t+2)+2=420t+122$
Vì $t\geq 0$ nên $n\geq 122$
Vậy số tự nhiên nhỏ nhất thỏa đề là $122$
số cần tìm là 122