K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2019

Với mọi số nguyên n ta có \(n\le n^2\). Do đó từ đề bài suy ra :

\(a^2\le b\le b^2\le c\le c^2\le a\le a^2\)

Do đó \(a^2=b=b^2=c=c^2=a=a^2\)

Ta có \(a^2=a\Leftrightarrow a(a-1)=0\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}\)

Tương tự \(\orbr{\begin{cases}b=0\\b=1\end{cases}},\orbr{\begin{cases}c=0\\c=1\end{cases}}\)

Có 2 đáp số a = b = c = 0 và a = b = c = 1

12 tháng 11 2018

Câu hỏi của Nguyễn Quốc Hưng - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo bài ở link này nhé!

13 tháng 11 2018

Dễ nhưng tao ko biết

18 tháng 12 2018

lên hỏi cô giáo

18 tháng 12 2018

a=3

b=5

c=7

+\(\frac{a}{b+c}>\frac{a}{a+b+c}\)

\(\frac{b}{a+c}>\frac{b}{a+b+c}\)

\(\frac{c}{a+b}>\frac{c}{a+b+c}\) cộng lại ta được

=>\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>1\)

+\(\frac{a}{b+c}< \frac{a+a}{a+b+c}\)

\(\frac{b}{a+c}< \frac{b+b}{a+b+c}\)

\(\frac{c}{a+b}< \frac{c+c}{a+b+c}\) cộng lại

=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 2\)

10 tháng 10 2018

cho mk hỏi vì sao a/b+c < a+a/a+b+c zậy

25 tháng 1 2017

k minh minh giai cho