Cho ba số thực không âm a, b, c và a + b + c = 3. Tìm giá trị nhỏ nhất của
K=√3a+1+√3b+1+√3c+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em có cách này không biết đúng không.Nếu sai đừng chửi e nha!Em mới lớp 7 thôi.
Từ đề bài suy ra \(0\le a;b;c\le3\Rightarrow a\left(3-a\right)\ge0\Leftrightarrow3a\ge a^2\)
Tương tự với b và c ta được:
\(K\ge\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}=P\left(a;b;c\right)\)
Đặt \(t=\frac{b+c}{2}\),ta có:
\(P\left(a;t;t\right)=\sqrt{a^2+1}+2\sqrt{t^2+1}\)
\(=P\left(a;\frac{b+c}{2};\frac{b+c}{2}\right)=\sqrt{a^2+1}+2\sqrt{\frac{\left(b+c\right)^2}{4}+1}\)
Xét hiệu:
\(P\left(a;b;c\right)-P\left(a;\frac{b+c}{2};\frac{b+c}{2}\right)=\left(\sqrt{b^2+1}+\sqrt{c^2+1}\right)-2\sqrt{\frac{\left(b+c\right)^2}{4}+1}\)
Áp dụng BĐT \(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\) (anh tự c/m,phải có cái này mới có dấu "=")
Suy ra \(P\left(a;b;c\right)-P\left(a;\frac{b+c}{2};\frac{b+c}{2}\right)\ge\sqrt{\left(b+c\right)^2+4}-2\sqrt{\frac{\left(b+c\right)^2+4}{4}}\)
\(=\sqrt{\left(b+c\right)^2+4}-\sqrt{\left(b+c\right)^2+4}=0\) (Khai căn cái mẫu ra)
Từ đây suy ra \(P\left(a;b;c\right)\ge P\left(a;\frac{b+c}{2};\frac{b+c}{2}\right)=P\left(a;t;t\right)\)
Mặt khác,kết hợp giả thiết suy ra \(a+2t=3\Rightarrow a=3-2t\)
Do đó,ta cần tìm min của: \(P\left(3-2t;t;t\right)=\sqrt{\left(3-2t\right)^2+1}+2\sqrt{t^2+1}\)
Đến đây em bí rồi ạ,để em suy nghĩ tiếp.
Giải xong bài này ra chắc chết... "." chấm cái nhẹ hóng cao nhân!
Áp dụng bđt Schwarz ta có:
\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).
\(Ta có: \(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+2\left(b+c\right)}\) Theo Cauchy: \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) => \(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)+\left(a+c\right)}+\frac{1}{2\left(b+c\right)}\right)\le\frac{1}{4}\left(\frac{1} {4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{1}{2\left(b+c\right)}\right)\) => \(\frac{1}{2a+3b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(a+c\right)}+\frac{1}{b+c}\right)\) Tương tự: \(\frac{1}{3a+2b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+c}\right)\) Và: \(\frac{1}{3a+3b+2c}\le\frac{1}{8}\left(\frac{1}{2\left(a+c\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+b}\right)\) => \(P\le\frac{1}{8}\left(\frac{2}{a+b}+\frac{2}{a+c}+\frac{2}{b+c}\right)=\frac{1}{4}.2017\) => Pmax = 2017:4=504,25\)
Ta có: \(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+2\left(b+c\right)}\)
Theo Cauchy: \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
=> \(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)+\left(a+c\right)}+\frac{1}{2\left(b+c\right)}\right)\le\frac{1}{4}\left(\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{1}{2\left(b+c\right)}\right)\)
=> \(\frac{1}{2a+3b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(a+c\right)}+\frac{1}{b+c}\right)\)
Tương tự: \(\frac{1}{3a+2b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+c}\right)\)
Và: \(\frac{1}{3a+3b+2c}\le\frac{1}{8}\left(\frac{1}{2\left(a+c\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+b}\right)\)
=> \(P\le\frac{1}{8}\left(\frac{2}{a+b}+\frac{2}{a+c}+\frac{2}{b+c}\right)=\frac{1}{4}.2017\)
=> Pmax = 2017:4=504,25
https://hoc24.vn/cau-hoi/cho-abc-0-thoa-man-abbcca3-tim-gia-tri-nho-nhat-cua-pdfrac13a1b2dfrac13b1c2dfrac13c1a2.6181078378966
Ta có BĐT: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3.3=9\)
\(\Rightarrow a+b+c\ge3\)
Phân tích và áp dụng BĐT AM-GM:
\(\dfrac{1+3a}{1+b^2}=\dfrac{1}{1+b^2}+\dfrac{3a}{1+b^2}=\left(1-\dfrac{b^2}{1+b^2}\right)+\left(3a-\dfrac{3ab^2}{1+b^2}\right)\ge\left(1-\dfrac{b^2}{2b}\right)+\left(3a-\dfrac{3ab^2}{2b}\right)=\left(1-\dfrac{b}{2}\right)+\left(3a-\dfrac{3}{2}ab\right)\)
Tương tự:
\(\dfrac{1+3b}{1+c^2}\ge\left(1-\dfrac{c}{2}\right)+\left(3b-\dfrac{3}{2}bc\right)\)
\(\dfrac{1+3c}{1+a^2}\ge\left(1-\dfrac{a}{2}\right)+\left(3c-\dfrac{3}{2}ca\right)\)
Cộng các vế của các BĐT ta được:
\(P\ge3-\dfrac{1}{2}\left(a+b+c\right)+3\left(a+b+c\right)-\dfrac{3}{2}\left(ab+bc+ca\right)=3+\dfrac{5}{2}\left(a+b+c\right)-\dfrac{3}{2}.3\ge3+\dfrac{5}{2}.3-\dfrac{9}{2}=6\)
\(P=6\Leftrightarrow a=b=c=1\)
Vậy \(P_{min}=6\)
Uầy, đề có sai ko nhỉ? Nếu đề như vầy thì biểu thức \(K=\sqrt{3}\left(a+b+c\right)+3=3\sqrt{3}+3\) luôn rồi chứ tìm gì nữa..