K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

P là số nguyên tố

=> n ( 4 - n ) là số nguyên tố

\(\Rightarrow\orbr{\begin{cases}n=1\\4-n=1\end{cases}}\)

Vì n > 4 - n => 4 - n = 1 => n = 3

Vậy n = 3 thì P là số nguyên tố 

8 tháng 2 2018

Để P là số nguyên tố thì:
\(\hept{\begin{cases}n=1\\4-n=1\end{cases}}\)

  • Nếu n=1 thì P=3. ( thõa mãn )
  • ​Nếu 4-n=1 \(\Rightarrow\)n=3 \(\Rightarrow\)P=3 ( thõa mãn )
    Vậy n= 1 hoặc n =3 thì P là số nguyên tố.
25 tháng 7 2023

\(P=n^4+4\) là số nguyên tố

mà \(n^4\) là số nguyên tố khi \(n=1\) và \(4\) là hợp số

\(\Rightarrow n\in\left\{1;3;5;7;...2k+1\right\}\left(k\in N\right)\)

9 tháng 8 2019

Em tham khảo!

Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath

Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath 

31 tháng 3 2020

Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)

Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)

Với \(x\ge2\) ta có:

\(n^5+n^4+1\)

\(=n^5-n^2+n^4-n+n^2+n+1\)

\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)

Vậy \(n=1\)

31 tháng 3 2020

Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT

Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT

Với \(n\ge2\) ta có:

\(A=n^8+n+1\)

\(=\left(n^8-n^2\right)+n^2+n+1\)

\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)

\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)

\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)

\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)

Vậy \(n=1\)

14 tháng 2 2016

 n^4+4 
=n^4+4n^2+4-4n^2 
=(n^2+2)^2-4n^2 
=(n^2-2n^2+2)(n^2+2n^2+2) 
={(n-1)^2+1}{(n+1)^2+1} # 
lúc này có hai truong hợp xảy ra 
*(n-1)^2+1=1-->(n-1)^2=0 
--->n-1=0-->n=1 
Thay vào # ta được: n^4+1=5(là số nguyên tố ) 
*(n+1)^2+1=1-->(n+1)^2=0-->n=-1(loại vì n là số tự nhiên 
Vậy n=1 thì n^4+4=5 là số nguyên tố