Cho ΔABC có AB=AC, kẻ BD⊥AC, CE⊥AB (D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a) BD=CE; b)ΔOEB=ΔODC c)AO là tia phân giác của góc BAC
Help me, Thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
a/ Xét tam giác BEC và tam giác CDB có:
\(\widehat{BEC}\)=\(\widehat{CDB}\)=900 (GT)
BC: cạnh chung
\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác ABC cân có AB = AC)
Vậy tam giác BEC = tam giác CDB
(theo trường hợp cạnh huyền góc nhọn)
=> BD = CE (2 cạnh tương ứng)
b/ Ta có: BE = CD (vì tam giác BEC = tam giác CDB) (1)
\(\widehat{E}\)=\(\widehat{D}\) = 900 (2)
Ta có: \(\widehat{EOB}\)=\(\widehat{DOC}\) (đối đỉnh) (*)
\(\widehat{E}\)=\(\widehat{D}\)=900 (**)
Mà tổng 3 góc trong tam giác bằng 1800 (***)
Từ (*),(**),(***) => \(\widehat{EBO}\)=\(\widehat{DCO}\) (3)
Từ (1),(2),(3) => tam giác OEB = tam giác ODC
c/ Xét tam giác AEO và tam giác ADO có:
AO: cạnh chung
\(\begin{cases}AB=AC\left(GT\right)\\EB=DC\end{cases}\)\(\Rightarrow\)AE = AD
EO = DO (vì tam giác OEB = tam giác ODC)
Vậy tam giác AEO = tam giác ADO (c.c.c)
=> \(\widehat{EAO}\)=\(\widehat{DAO}\) (2 góc tương ứng)
=> AO là tia phân giác \(\widehat{BAC}\) (đpcm)
Lời giải:
a. Xét tam giác $ABD$ và $ACE$ có:
$\widehat{A}$ chung
$\widehat{ADB}=\widehat{AEC}=90^0$
$AB=AC$ (gt)
$\Rightarrow \triangle ABD=\triangle ACE$ (ch-gn)
$\Rightarrow BD=CE$
b. Từ tam giác bằng nhau phần a suy ra $AD=AE$
Mà $AB=AC$
$\Rightarrow AB-AE=AC-AD$ hay $BE=CD$
Xét tam giác $OEB$ và $ODC$ có:
$\widehat{EOB}=\widehat{DOC}$ (đối đỉnh)
$\widehat{OEB}=\widehat{ODC}=90^0$
$EB=DC$ (cmt)
$\Rightarrow \triangle OEB=\triangle ODC$ (ch-cgv)
c.
Từ tam giác bằng nhau phần b suy ra $OB=OC$
Xét tam giác $ABO$ và $ACO$ có:
$AO$ chung
$AB=AC$ (gt)
$BO=CO$ (cmt)
$\Rightarrow \triangle ABO=\triangle ACO$ (c.c.c)
$\Rightarrow \widehat{BAO}=\widehat{CAO}$
$\Rightarrow AO$ là tia phân giác $\widehat{BAC}$ (đpcm)
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔEBC=ΔDCB
Suy ra: EC=DB
b: Xét ΔOEB vuông tại E và ΔODC vuông tại D có
EB=DC
\(\widehat{EBO}=\widehat{DCO}\)
Do đó:ΔOEB=ΔODC
c: Ta có: ΔOEB=ΔODC
nên OB=OC
Xét ΔAOB và ΔAOC có
AO chung
OB=OC
AB=AC
Do đó: ΔAOB=ΔAOC
Suy ra: \(\widehat{BAO}=\widehat{CAO}\)
hay AO là tia phân giác của góc BAC
a) Xét 2 tam giác vuông tam giác ABD và tam giác ACE ta có:
AB = AC (GT)
Góc BAC: chung
=> Tam giác ABD = Tam giác ACE (c.h - g.n)
=> BD = CE (2 cạnh tương ứng)
b) Tam giác ABD = Tam giác ACE (cmt)
=> AD = AE (2 cạnh tương ứng)
Xét 2 tam giác vuông tam giác AEO và tam giác ADO ta có:
AD = AE (cmt)
OA: cạnh chung
=> Tam giác AEO = tam giác ADO (c.h - c.g.v)
=> Góc EAO = Góc DAO (2 góc tương ứng)
=> AO là phân giác của góc EAD
Hay: AO là phân giác của góc BAC
F ở đâu bạn ?
b, Xét tam giác ABD và tam giác ACE
^A _ chung
AB = AC
Vậy tam giác ABD = tam giác ACE (ch-gn)
c, Ta có BD ; CE lần lượt là đường cao
mà BD giao CE = O
=> O là trực tâm tam giác ABC
=> AO là đường cao thứ 3 trong tam giác
mà tam giác ABC cân tại A nên AO là đường cao
đồng thời là đường phân giác ^BAC
Ta có CE, BD, AH cắt nhau tại O
O là trực tâm của tam giac ABC (tính chât 3 đường trung trực tam giác)
AH vuông góc BC (1)
Gọi I là giao điểm của AH và ED, ta có:
Tam giác AED là tam giac cân tại A (gt)
Suy ra AI vuông góc ED (AH vuông góc BC) (2)
Từ (1) và (2) suy ra ED//BC (đpcm)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE