CMR 4x+y chia hết cho 13 và x+10y chia hết cho 13 vứi mọi số tự nhiên x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh tồn tại vô số n là số tự nhiên sao cho 4n2 +1 chia hết cho 5 và chia hết chô 13
Ta có : 243 chia hết cho 9 => 243a chia hết cho 9 (a thuộc N)
657 chia hết cho 9 => 657b chia hết cho 9 (b thuộc N)
Từ 2 điều trên => 243a + 657b chia hết cho 9 (a, b thuộc N)
Vì 70 chia hết cho x, 80 chia hết cho x nên x thuộc ƯC( 70,80 )
70=2.5.7
80=24.5
\(\Rightarrow\)ƯCLN(70,80)= 2.5=10
\(\Rightarrow\) x \(\in\) Ư(70,80)
Ư(70,80)={1; 2; 5; 7; 10; ...}
Vì x>8 nên x=10.
Bài toán giải như sau :
70 chia hết cho x ; 80 chia hết x nên x thuộc ƯC (70 ; 80)
Phân tích ra thừa số nguyên tố :
70 = 2.5.7
80 = 2.2.2.2 .5
UWCLN (70 ; 80) =2.5 =10
Ư (70 ; 80) Ư(70;80) = {1;2;5;7;10;...}
Vì x > 8 nên x=10
Ta có: \(\overline{abc}⋮37\Leftrightarrow100a+10b+c⋮37\)(1)
+) (1) => \(10\left(100a+10b+c\right)⋮37\)
<=> \(100b+10c+a+999a⋮37\) mà \(999a=37.27a⋮37\)
=> \(100b+10c+a⋮37\Leftrightarrow\overline{bca}⋮37\)
+) (1) => \(100\left(100a+10b+c\right)⋮37\)
<=> \(\left(100c+10a+b\right)+999\left(10a+b\right)⋮37\)mà \(999\left(10a+b\right)=37.27\left(10a+b\right)⋮37\)
=> \(\overline{cab}=100c+10a+b⋮37\)
a) Ta có:
\(n^2\left(n+1\right)-n\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì trong 3 số nguyên liên tiếp, có ít nhất 1 số chia hết cho 3 và 1 số chia hết cho 2 nên tích n(n-1)(n+1) chia hết cho 6 hay \(n^2\left(n+1\right)-n\left(n+1\right)\) chia hết cho 6(đpcm).
b) Ta có:
\(20^{n+1}-20^n=20^n\cdot19\)
Vì \(20^n\) là số nguyên nên \(20^n\cdot19⋮19\). Hay \(20^{n+1}-20^n⋮19\left(đpcm\right)\)
Gọi n \(\in\)N . Ta có :
113-104=9 . Mà 104 chia hết cho 13 => 9+ 13n + 4 chia hết cho 13
=> x=13n+4
113+ x chia hết cho 13 \(\Rightarrow\) 113 + 4 + x chia hết cho 13 \(\Rightarrow\) x = 4 \(\Rightarrow\) 113 + 4 chia hết cho 13
Gọi x là số phải tìm thì x + 2 chia hết cho 3, 4, 5, 6 nên x + 2 là bội chung của 3, 4, 5, 6.
BCNN (3, 4, 5, 6) = 60 nên x + 2 = 60n.
Do đó x = 60n - 2 (n = 1, 2, 3, ...).
Ngoài ra x phải là số nhỏ nhất có tính chất trên và x phải chia hết cho 13.
Lần lượt cho n bằng 1, 2, 3, ... ta thấy đến n = 10 thì x = 598 chia hết cho 13.
Vậy số tự nhiên đó là 598
\(\text{Gọi x là số phải tìm thì x + 2 chia hết cho 3, 4, 5, 6 nên x + 2 là bội chung của 3, 4, 5, 6.}\)
BCNN (3, 4, 5, 6) = 60 nên x + 2 = 60n.
Do đó x = 60n - 2 (n = 1, 2, 3, ...).
Ngoài ra x phải là số nhỏ nhất có tính chất trên và x phải chia hết cho 13.
Lần lượt cho n bằng 1, 2, 3, ... ta thấy đến n = 10 thì x = 598 chia hết cho 13.
Vậy số tự nhiên đó là 598
CHTT nha bạn !